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Background: Sulfadoxine-pyrimethamine (SP) is recommended for intermittent
preventive treatment in Africa against Plasmodium falciparum infection. However,
increasing SP resistance (SPR) of P. falciparum affects the therapeutic efficacy of SP,
and pfdhfr (encoding dihydrofolate reductase) and pfdhps (encoding dihydropteroate
synthase) genes are widely used as molecular markers for SPR surveillance. In the present
study, we analyzed single nucleotide polymorphisms (SNPs) of pfdhfr and pfdhps in P.
falciparum isolated from infected Chinese migrant workers returning from Africa.

Methods: In total, 159bloodsamples fromP. falciparum-infectedworkerswhohad returned
from Africa to Anhui, Shangdong, and Guangxi provinces were successfully detected and
analyzed from 2017 to 2019. The SNPs in pfdhfr and pfdhps were analyzed using nested
PCR. The genotypes and linkage disequilibrium (LD) were analyzed using Haploview.

Results: High frequencies of the Asn51Ile (N51I), Cys59Arg(C59R), and Ser108Asn
(S108N) mutant alleles were observed, with mutation frequencies of 97.60, 87.43, and
97.01% in pfdhfr, respectively. A triple mutation (IRN) in pfdhfr was the most prevalent
haplotype (86.83%). Six point mutations were detected in pfdhps DNA fragment,
Ile431Val (I431V), Ser436Ala (S436A), Ala437Gly (A437G), Lys540Glu(K540E),
Ala581Gly(A581G), Ala613Ser(A613S). The pfdhps K540E (27.67%) was the most
predominant allele, followed by S436A (27.04%), and a single mutant haplotype
(SGKAA; 62.66%) was predominant in pfdhps. In total, 5 haplotypes of the pfdhfr gene
and 13 haplotypes of the pfdhps gene were identified. A total of 130 isolates with 12
unique haplotypes were found in the pfdhfr-pfdhps combined haplotypes, most of them
(n = 85, 65.38%) carried quadruple allele combinations (CIRNI-SGKAA).
gy | www.frontiersin.org September 2021 | Volume 11 | Article 6731941

https://www.frontiersin.org/articles/10.3389/fcimb.2021.673194/full
https://www.frontiersin.org/articles/10.3389/fcimb.2021.673194/full
https://www.frontiersin.org/articles/10.3389/fcimb.2021.673194/full
https://www.frontiersin.org/articles/10.3389/fcimb.2021.673194/full
https://www.frontiersin.org/articles/10.3389/fcimb.2021.673194/full
https://www.frontiersin.org/articles/10.3389/fcimb.2021.673194/full
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#articles
http://creativecommons.org/licenses/by/4.0/
mailto:caojpcdc@163.com
mailto:xiag@nipd.chinacdc.cn
https://doi.org/10.3389/fcimb.2021.673194
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#editorial-board
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#editorial-board
https://doi.org/10.3389/fcimb.2021.673194
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
http://crossmark.crossref.org/dialog/?doi=10.3389/fcimb.2021.673194&domain=pdf&date_stamp=2021-09-08


Yan et al. pfdhfr/pfdhps Mutations in Chinese Migrants

Frontiers in Cellular and Infection Microbiolo
Conclusion: A high prevalence of point mutations in the pfdhfr and pfdhps genes of P.
falciparum isolates was detected among Chinese migrant workers returning from Africa.
Therefore, continuous in vitro molecular monitoring of Sulfadoxine-Pyrimethemine
combined in vivo therapeutic monitoring of artemisinin combination therapy (ACT)
efficacy and additional control efforts among migrant workers are urgently needed.
Keywords: Plasmodium falciparum, sulfadoxine-pyrimethamine, dihydropteroate synthase, dihydrofolate
reductase, migrants from Africa
INTRODUCTION

ImportedPlasmodium falciparum infections are of great concern in
China during malaria elimination and post-elimination stages,
because China achieved zero indigenous malaria cases in 2017
(Feng et al., 2018). Appropriate treatment for P. falciparum
according to the national plan is important; however, some
studies have demonstrated mutations in molecular markers
related to artemisinin combination therapy (ACT) resistance
among isolates from Africa, suggesting that careful surveillance of
African parasite populations is still warranted (Feng et al., 2015a;
Feng et al., 2019, Yan et al., 2020).

Sulfadoxine-pyrimethamine (SP) is a second-line antimalarial for
uncomplicatedP. falciparummalaria treatment, as recommended by
the World Health Organization (WHO), which is used as an
intermittent preventive treatment in pregnancy (IPTp) and as an
intermittent preventive treatment in infants (IPTi) in malaria-
endemic regions (Gosling et al., 2010; Konate et al., 2011).
Resistance to SP is caused mainly by point mutations in pfdhfr
(encoding dihydrofolate reductase) and pfdhps (encoding
dihydropteroate synthase). Mutations in pfdhfr and pfdhps have
been associated with decreased parasite sensitivity to the SP,
because the products of these genes could incrementally increase
the parasite’s tolerance to the drugs in vitro (Chulay et al. 1984).
Studies have identified point mutations in codons N51I, C59R, and
S108N, I164L of pfdhfr located on chromosome 4 and codons I431V,
S436A, A437G, K540E, A581G, and A613S of pfdhps located on
chromosome 8, all of which were associated with P. falciparum SP
treatment failure (Triglia et al., 1997; Berglez et al., 2004; Pearce et al.,
2009). Monitoring drug resistance and the pattern of mutations is
essential for early detection and subsequent prevention of the spread
ofdrug resistance.Thepresent study identified thepolymorphisms in
pfdhfr and pfdhps in P. falciparum among returnedmigrant workers
from Africa in 2017–2019 reported in eastern China. The results
provide a deeper understanding of the disease as well as baseline
information on antimalarial drug resistance among imported
P. falciparum in China.
MATERIALS AND METHODS

Sample Sites
Sample Collection and DNA Extraction
The study was conducted in Anhui, Shandong, and Guangxi
Provinces in Eastern and Southern China, where imported
P. falciparum cases were predominantly. Anhui Province covers
gy | www.frontiersin.org 2
105 counties with 70.6 million people and experienced a malaria
resurgence in 2005–2008 that was mainly caused by the
accumulation of residual foci of P. vivax (Feng et al., 2015b).
Shandong Province, located in eastern China, has a long coastline
measuring 3,024.4 kilometers. It contains 137 counties and has a
population of 97.9 million. Economic trade overseas is frequent.
Another province, Guangxi, is known for its gold miners who
returned from Ghana in 2013, which was mainly reported in
Shanglin County (Feng et al., 2015a). The number of imported P.
falciparum cases, especially those from Africa, has increased
significantly in these three provinces, and 360 P. falciparum cases
were reported in 2019, accounting for 18.5% of all P. falciparum
cases nationwide (Zhang L et al., 2020).

A total of 206 P. falciparum-infected blood samples were
collected from the travelers returning from Africa from 2017 to
2019. The samples distribution were shown as Figure 1.
Approximately 100 ml of finger-prick blood was spotted onto a
piece of 3MM Whatman filter paper (GE Healthcare, Boston, MA,
USA) and air dried.

The Plasmodium falciparum genomic DNA from the
approximately 100 ml of collected blood sample was extracted
using a QIAamp DNA blood kit (QIAGEN, Valencia, CA, USA)
as described previously (Yan et al., 2020). Each of the samples was
labeled with a study number and stored at −4°C until extraction.
Individual epidemiological information was also collected using a
web-based reporting system (China Information System for
Diseases Control and Prevention) and analyzed.

Detection of pfdhfr and pfdhpsPolymorphisms
Point mutations at codons 16, 51, 59, 108, and 164 of the pfdhfr
gene and codons 431, 436, 437, 540, 581, and 613 of the pfdhps
gene were evaluated using nested PCR amplification. The
sequences of the primers used for pfdhfr and pfdhps genotyping
were as described previously (Zhang et al., 2014). The primary
amplification was performed using the following parameters: 1
cycle of 95°C for 3 min; 35 cycles of 95°C for 30 s, 55°C for 30 s,
and 65°C for 6 for 30 s, and 1 cycle of 65°C for 60 s; and 65°C for 5
min. The second amplifcation was performed using the following
parameters: 1 cycle of 95°C for 3 min; 35 cycles of 95°C for 30 s,
52°C for 30 s, and 65°C for 60 s; and 1 cycle of 65°C for 5 min. 750-
bp product of pfdhps were sent for Sanger sequencing (Shanghai
Bunan Biological Co., Ltd., Shanghai, China).

Data Analysis
Sequences were analyzed using the Blast program (http://blast.
ncbi.nlm.nih.gov/). Multiple nucleotide sequence alignments and
September 2021 | Volume 11 | Article 673194
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analysis were carried out using the MAFFT web-based tool with
the Cluster Omega Sequence Alignment Editor (https://www.ebi.
ac.uk/Tools/msa/clustalo/). Sequences with poor quality after
three sequencing attempts or those with more than one peak at
one locus were not included in the analysis. The map showing
the imported of countries with number of the isolates was created
by ArcGIS 10.1 (Environmental Systems Research Institute, Inc.,
Redlands, CA, USA). SPSS18.0 (IBM Corp., Armonk, NY, USA)
was used to conduct the statistical analyses, and the Chi-squared
test was employed to test the different constituent ratios of pfdhfr
and pfdhps gene polymorphisms. The Fisher’s precision
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 3
probability test was used as the sample size is less 50; For the
sample size less than five would be discarded when analyzing the
geographical distribution difference. The inter and intragenic
SNP Linkage disequilibrium (LD) associations of pfdhfr and
pfdhps were analyzed using Haploview 15 (Patel et al., 2017).

Ethical Considerations
This study was reviewed and approved by the ethical committee
of the National Institute of Parasitic Diseases, Chinese Centre for
Disease Control and Prevention (NIPD, China CDC,
No. 2019008).
FIGURE 1 | Sample collection and distribution, samples collection sites and sample screening and follow-up analysis of subject patterns.
September 2021 | Volume 11 | Article 673194
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RESULTS

Epidemiological Information
Among the 206 P. falciparum isolates collected in this study, 202
and 177 isolates were successfully amplified and sequenced for
the pfdhfr and pfdhps genes, respectively; however, only single
infections and both of pfdhfr and pfdhps successful amplicons
were involved in the final analysis. Therefore, a total of 159 P.
falciparum isolates were successfully detected and analyzed in
this study (Figure 1). Their distribution was identified as 2 from
North Africa, 23 from East Africa, 54 from West Africa, and 80
from Central Africa. Among them, the Democratic Republic of
the Congo (n = 28), Nigeria (n = 27), and Angola (n = 16) were
considered as the top three imported source countries. The
average patient age was 42 years, and 154 patients (154/159,
96.86%) were male. The numbers of cases reported in 2017, 2018,
and 2019 were 28, 58, and 73, respectively.

Prevalence of pfdhfr Polymorphisms
For pfdhfr, no polymorphism was found for codons 50 or 164.
Compared with mutations N51I and C59R, S108N had a higher
SNP prevalence, whereas, the difference between N51I and
C59R was not significant. Only three isolates were sequenced
as wild-type Asparagine-Cysteine-Serine (NCS) (accounting for
1.89%), whereas, the triple-mutant genotype, Isoleucine-
Arginine-Asparagine (IRN), comprised 80.50% (n = 128), the
others were NCN (n = 3, 1.89%), ICN (n = 10, 6.29%), and
NRN (n = 15, 9.43%), respectively (Table 1).

Prevalence of pfdhps Polymorphisms
The SNPs of pfdhps were relatively scattered, S436A (27.07%)
and K540E (27.67%) carried a higher allele frequency, which
were statistically significant than others (the average mutant
frequency was 6.92%). The frequencies of the other three alleles,
I431V, A437G, and A581G, were lower than those of S436A or
K540E, but higher than that of S613A, which was carried by only
two isolates. In all, among 159 P. falciparum isolates, 13 kinds of
mutants of pfdhps were detected. Further sequencing showed
that 73 single mutant isolates, including ISAEAA (the bold
residue represents the mutated site; n = 41, 25.79%), IAAKAA
(n = 24, 15.09%), ISGKAA (n = 6, 3.77%), and ISAKGA (n = 2,
1.26%); 13 double mutant isolates, including IAGKAA (n = 7,
4.40%), VAAKAA (n = 2, 1.26%), ISAEGA (n = 2, 1.26%),
IAAKAS (n = 1, 0.63%), and IAAEAA (n = 1, 0.63%); 9 triple
mutant genotypes, comprising 8 examples of VAAKGA, 1 of
VSGKGA; and only 1 quadruple mutation, as VAAKGS, were
identified. There were more wild-type isolates of pfdhps than
pfdhfr (63 pfdhps isolates, compared with three in pfdhfr). Three
genotypes, ISAKAA (39.62%, 63/159), ISAEAA (25.79%, 41/
159), and IAAKAA (15.09%, 24/159), accounted for 80.50% of
all pfdhps genotypes (Table 2).

Geographical Genetic Analysis
The mutant frequency in all targeted pfdhfr gene fragments were all
above 86.79%, and there was no significant difference (P > 0.05)
among isolates from West, East, and Central Africa. For the pfdhps
gene, the mutant genotypes carried a relatively high number of
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 4
polymorphisms. The two P. falciparum samples from North Africa
were wild-types (Table 3). Two of six loci were detected as site
mutations in samples from East Africa, with K540E representing
69.57% (16/23) of the mutations, which was a markedly higher
frequency than that for S436A (4.34%, 1/23). Each locus carried a
sense mutation associated withWest Africa, the mutant frequencies
were 14.81% (8/54, I413V), 51.85% (28/54, S436V), 9.26% (5/54,
A437G), 11.11% (6/54, K540E), 12.96% (7/54, A581G), and 5.56%
(3/54, A613S). The site mutations in central African region were all
different for the S436V (17.5%, 14/80, P < 0.001) and K540E (27.5%,
22/80, P = 0.017) loci, which was significantly different compared
with the Western African Region isolates (P < 0.05). Moreover, the
mutant frequency of K540E varied between Western and Eastern
African Region isolates (P <0.01). A613S only occurred in Ghana
(n = 2) and Nigeria (n = 1) in West Africa.

Linkage Disequilibrium (LD) Analysis
In total, 25 genotypes of pfdhfr/pfdhps were detected among the
159 P. falciparum isolates. For pfdhfr, no SNP was found for
codons 16 or 164. Ultimately, 5 and 13 genotypes of pfdhfr
(involving codons 51, 59, and 108) and pfdhps (involving codons
431, 436, 437, 540, 581, and 613) were detected and analyzed. To
evaluate the SNP LD associations of pfdhfr and pfdhps, several
TABLE 1 | Prevalence of pfdhfr and pfdhps polymorphisms in imported African isolates.

Gene Position Wild
type

Mutant
type

Mutant isolates
(n)

Frequency
(%)

pfdhfr 51 AAT ATT 138 86.79
59 TGT CGT 143 89.94
108 AGC AAC 156 98.11

pfdhps 431 ATA GTA 12 7.55
436 TCT GCT 43 27.04
437 GCT GGT 15 9.43
540 AAA GAA 44 27.67
581 GCG GGG 14 8.81
613 GCC TCC 3 1.89
September 2
021 | Volume 11 |
The bold values stand for mutant nucleic acid base.
TABLE 2 | Prevalence of pfdhfr and pfdhps haplotypes.

Gene Genotype Mutations Sample size Frequency (%)

pfdhfr NCS 0 3 1.89%
NCN 1 3 1.89%
ICN 2 10 6.29%
NRN 2 15 9.43%
IRN 3 128 80.50%

pfdhps ISAKAA 0 63 39.62%
ISAEAA 1 41 25.79%
IAAKAA 1 24 15.09%
ISGKAA 1 6 3.77%
ISAKGA 1 2 1.26%
VAAKAA 2 2 1.26%
IAGKAA 2 7 4.40%
ISAEGA 2 2 1.26%
IAAKAS 2 1 0.63%
IAAEAA 2 1 0.63%
VAAKGA 3 8 5.03%
VSGKGA 3 1 0.63%
VAAKGS 4 1 0.63%
The bold values stand for mutant nucleic acid base.
Article 673194
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TABLE 3 | Geographical genetic analysis of pfdhfr/pfdhps genotypes.

Region No. samples Country No. samples No. of mutations pfdhfr/pfdhps genotypes No. of genotypes

North Africa 2 Libya 1 3 IRN/ISAKAA 1
Sudan 1 3 IRN/ISAKAA 1

East Africa 23 Kenya 1 3 IRN/ISAKAA 1
Madagascar 2 2 NRN/ISAKAA 2
Ethiopia 3 3 IRN/ISAKAA 1

4 IRN/IAAKAA 1
4 IRN/ISAEAA 1

Zambia 4 3 NRN/ISAEAA 1
4 IRN/ISAEAA 3

Uganda 6 4 IRN/ISAEAA 6
Mozambique 7 2 ICN/ISAKAA 1

4 IRN/ISAEAA 6
West Africa 54 Mali 1 3 IRN/ISAKAA 1

Sierra Leone 2 2 NCN/IAAKAA 1
3 IRN/ISAKAA 1

Guinea 2 3 IRN/ISAKAA 1
4 IRN/ISGKAA 1

Liberia 3 1 NCN/ISAKAA 1
4 IRN/IAAKAA 2

Cote d'lvoire 8 0 NCS/ISAKAA 1
2 NRN/ISAKAA 1
3 IRN/ISAKAA 2
4 IRN/IAAKAA 3
4 IRN/ISAEAA 1

Ghana 16 1 NCS/IAAKAA 1
2 NRN/ISAKAA 1
3 IRN/ISAKAA 3
3 ICN/ISAEAA 1
3 NRN/IAAKAA 1
4 IRN/IAAKAA 3
4 IRN/ISAEAA 2
4 ICN/IAGKAA 1
4 NRN/IAAKAS 1
5 IRN/IAAEAA 1
5 IRN/IAGKAA 1

Nigeria 22 2 NRN/ISAKAA 1
3 IRN/ISAKAA 6
4 IRN/IAAKAA 5
4 IRN/ISAEAA 1
5 IRN/IAGKAA 1
5 IRN/VAAKAA 1
5 NRN/VAAKGS 1
6 IRN/VAAKGA 6

Central Africa 80 Chad 1 6 IRN/VSGKGA 1
Central Africa 3 2 NRN/ISAKAA 2

3 IRN/ISAKAA 1
Congo 4 2 NRN/ISAKAA 2

3 IRN/ISAKAA 2
Equatorial Guinea 6 3 IRN/ISAKAA 3

4 IRN/ISAKGA 1
5 IRN/ISAEGA 1
6 IRN/VAAKGA 1

Gabon 10 3 IRN/ISAKAA 7
4 IRN/ISAEAA 3

Angola 14 2 ICN/ISAKAA 2
2 NCN/ISGKAA 1
3 IRN/ISAKAA 4
4 IRN/IAAKAA 2
4 IRN/ISAKGA 1
4 IRN/ISAEAA 3
4 IRN/ISGKAA 1

Cameroon 14 3 IRN/ISAKAA 5
4 IRN/IAAKAA 4

(Continued)
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statistically significant associations were found among the SNPs
located in both the pfdhfr and pfdhps genes (Figure 2). For the
pfdhfr gene, N51I was significantly associated with the SNPs (t175c,
C59R; and g323a, S108N) with a D’ value of 0.84 (P < 0.05) and 1.0
(P < 0.05), respectively. Similarly, t175c was significantly associated
with the g323a (0.71, P < 0.05). For the pfdhps gene, t1482g, c1486g,
a1794g, and g2013t formed an LD block. The sole SNP (t1482g,
S436A) was significantly associated with the SNPs (c1486g, A437G;
a1794g, K540E; and g2013t, A613S) with D’ values of 0.75, 1.0, and
0.73, respectively. The SNP (t152a) of the pfdhfr gene encoding
N51I was significantly associated with c1486g, with a D’ value of
0.68. No associations were detected for the other SNPs of either the
pfdhfr or pfdhps genes.
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 6
DISCUSSION
The emergence and spread of Sulfadoxine-Pyrimethamine (SP)
resistance has narrowed its usage to IPTp and IPTi in Africa
(Rieckmann and Cheng, 2002). In 2019, the WHO covered 33
African countries for IPTp, in which at least nearly 62% of
pregnant women received a first dose of IPTp (of four doses of
ITPp)) (World Health Organization, 2020). The presents study
aimed to determine the prevalence of SP resistance-associated
pfdhfr and pfdhps genes in P. falciparum isolated from returned
migrant workers from Africa reported in China. The study
showed the pfdhfr triple haplotype mutation (IRN, including
N51I, C59R, S108N) was highly prevalent, which was similar to
other publications concerning African isolates (Jiang et al., 2019;
Gikunju et al., 2020; Quan et al., 2020). This high prevalence was
also found in the migrant workers returning to Guangxi from
Ghana, suggesting that SP resistant genotype was widespread in
Central and West Africa (Zhao et al., 2020). It was noted pfdhfr
I164L, which was also associated with high resistance to
cycloguanil, was detected in Ghanaian isolates, but was not
found in our study (Zhao et al., 2020). It is worth noting that
I164L is common in East Africa and Asia (Basuki et al., 2018,;
Lynch et al., 2017), but rarely seen in Central and West Africa.
One of the explanations was that this mutation site carries a high
fitness cost to the parasite and therefore it is unable to survive the
immune response of hosts in West Africa (Nzila et al., 2002).
Further studies are needed to assess the effect of this mutation on
the phenotype of parasites carrying this haplotype.

Mutations in pfdhps haplotypes at S436A and K540E, which
are associated with decreased parasite sensitivity to Sulfadoxine
drugs (Berglez et al., 2004), carried a higher allele frequency,
which was also found in Uganda and Tanzania (Alifrangis et al.,
2009; Mbonye et al., 2015). The WHO recommended that IPTp
should not implemented in the regions when K540E exceed 50%;
in our study, this mutation was present at 27.67%, which might
favor the continued efficacy of IPTp treatment in these countries.
Another mutation, A581G, is considered to have an important
modulatory role in SP resistance. IPTp and SP could not protect
pregnant women from delivering low birth weight infants when
the frequency of this mutation is above 10% (Chico et al., 2015).
In our study, the frequency of this mutation was 8.81% and half
TABLE 3 | Continued

Region No. samples Country No. samples No. of mutations pfdhfr/pfdhps genotypes No. of genotypes

4 IRN/ISAEAA 1
5 IRN/IAGKAA 2
5 IRN/VAAKAA 1
6 IRN/VAAKGA 1

DR Congo 28 2 ICN/ISAKAA 1
2 NRN/ISAKAA 1
3 IRN/ISAKAA 6
3 NRN/ISAEAA 1
3 ICN/ISAEAA 3
4 IRN/IAAKAA 1
4 IRN/ISGKAA 3
4 ICN/ISAEGA 1
4 IRN/ISAEAA 9
5 IRN/IAGKAA 2
September 2021 | Volume 1
FIGURE 2 | Linkage disequilibrium (LD) analysis of pfdhfr and pfdhps SNPs. For
the pfdhfr gene, the single amino acid mutations were N51I, C59R, and S108N,
respectively. Likewise, pfdhps gene are related to the mutations S436A, A437G,
K540E, and A613S, respectively. The dark and light red squares indicate a linkage
that was statistically significant (P < 0.05). Cambridge blue squares indicate a
linkage that is present but is not statistically significant (P > 0.05). A white square
with indicates that no linkage is present.
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https://www.frontiersin.org/journals/cellular-and-infection-microbiology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#articles


Yan et al. pfdhfr/pfdhps Mutations in Chinese Migrants
of these mutated isolates were found in Nigeria. For the mutation
A437G, which was associated with resistance to Sulfadoxine in
endemic regions because of the drug pressure selection, showed a
frequency of only 9.43% in our study, which was lower than that
reported in Equatorial Guinea, Pakistan, and Iran (Rouhani et al.,
2015; Yaqoob et al., 2018; Jiang et al., 2019). The I431V mutation
was detected in Nigeria, Cameroon, Equatorial Guinea, and
Chad. The most frequent haplotype of I431V was VAAKGA,
similar to that found in isolates from Cameroon and Nigeria
(Chauvin et al., 2015; Oguike et al., 2016). These haplotypes
occurring in Central and West Africa suggested that SP
conferred a selective advantage, and ongoing drug pressure is
relative strong because SP was used as IPTp in these regions. It is
noted A437G was widely spread in central and western African
countries, which indicating in vivo SP drug resistance in these
regions (Pearce et al., 2009). Some other studies combined with
the clinical study indicated the pfdhfr triple mutant genotype was
associated with SP treatment resistance (Basco et al, 2000;
Naidoo et al., 2013). However, in this study, the A437G was
not widely spread in central and western African region, even less
than S436A, which was also different with our previous study in
China-Myanmar border (Zhang et al., 2014), which may partially
ascribe as the sample size limitation, the loss of drug pressure,
and time passage may also the potential reason.

In our study, the frequency of the quadruple mutation IRN/
ISAEAA was significantly higher in East Africa (100% in Uganda,
85.7% inMozambique) than western and central African countries
(P < 0.01), suggesting that the clinical implications of such
haplotypes require further combined genotype and phenotype
analysis. SP was limited for malaria control among the general
population in many countries in Africa because of the high
frequency of drug resistance developed by P. falciparum;
therefore, we expected to obtain SP sensitive strains. Indeed, in
our study, 39.62% of the isolates harbored the non-mutated pfdhps
gene. This may be similar to the process for chloroquine, which
tends to recover its effectiveness against the parasite after a long
period duringwhich its use inmalaria control activities is halted (Lu
et al., 2017).
CONCLUSION

This study showed a high frequency of SP-resistance associated
SNPs in the pfdhfr and pfdhps genes of P. falciparum isolated
since 2017 in returned migrant workers from Africa. The high
resistance may be linked to the unsuccessful withdrawal of the SP
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 7
treatment, and thus might affect the efficacy of IPTp for pregnant
women and IPTi for infants. Mutations such as K540E, and the
pfdhfr-pfdhps haplotype IRN/ISAEAA, which occurred at
moderate frequencies in East Africa, such as in Uganda and
Mozambique, the other regions showed as high frequency triple
mutations of pfdhfr, but relatively scatter site mutations in pfdhps
gene. The present data could provide the evidence for molecular
surveillance in the post-elimination stage in China, focusing on
the risk population among returning migrant workers from
Africa, and could be used to determine the treatment policy
for imported malaria in China.
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