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Summary

What is already known on this topic?

Triatoma rubrofasciata is a potential vector that can
transmit American trypanosomiasis and was widely
recorded in South of China.

What is added by this report?

Because of the low density of the triatomines, more
habitats have not been discovered. This study mainly
focused on predicting the geographical distribution of
T. rubrofasciata under current and future climatic
conditions in China using the MaxEnt model.

What are the implications for public health
practice?

The result showed that the distribution of 7.
rubrofasciata was largely affected by annual mean
temperature and possessed a high potential for
expansion in southern China in the future. Our
predictions are useful for targeting surveillance efforts
in high-risk areas and increasing the efficiency and
accuracy of public health investigations and vector
control efforts in China.

Chagas disease, caused by Trypanosoma cruzi, is
considered the fourth most transmitted disease after
malaria, tuberculosis, and schistosomiasis by World
Health Organization (WHO) (7). Chagas disease has
become a global health issue in recent decades due to
the spreading worldwide (2). Although there has not
yet been any recorded cases of Chagas disease in China,
one of the potential vectors, Triatoma rubrofasciata that
can transmit 7. cruzi, was widely recorded in southern
China (3). In this study, the maximum entropy
method (MaxEnt) for species distribution modeling
(SDM) was used to predict the geographical
distribution of 7. rubrofasciata, under current and
future climatic conditions (BCC-CSM-1 RCP26) in
China. A total of 184 locations with the species
occurrence were recorded; 19 bioclimatic variables
derived from monthly data were used in the modeling
process. The results showed that the distribution of 7.
rubrofasciata was largely affected by annual mean
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temperature and minimum temperature of the coldest
month. According to species response curves, this
species  preferred  habitats  with
temperatures of 22.5 °C. Climate change projections
indicated that by 2050 and 2070, the habitats of the 7.
rubrofasciata would be expanded.

T. rubrofasciata is one of the potential vectors of
Chagas disease that is recorded to be the most widely
distributed worldwide. In China, we started
monitoring triatomines and imported Chagas disease
in 2016. During a survey from 2016-2018, 170
habitats were recorded (3), but because of low density
of the triatomines, many habitats were likely
underrepresented. Therefore, predicting these habitats
through appropriate environmental data is important
to make up for this underrepresentation.

MaxEnt is a machine learning model that estimates a
target probability distribution by calculating the
probability distribution of maximum entropy (4).
MaxEnt has been used extensively to model the
distribution of several vector-reliant disease-causing
pathogens (5-6). Many scholars believed that the
MaxEnt model was better than other models in
predicting the spatial distribution of species, especially
in cases of incomplete distribution data (6-7). MaxEnt
is also capable of projecting shifts in species
distribution under various climate change scenarios (4).
In this study, MaxEnt software was used to predict the
potential distribution of 7. rubrofasciata. A total of 184
records have been collected in the database. These
came from two sources: 1) published records on 7.
rubrofasciata in journals, books, and reports and from
Shanghai Insect Museum and Museum of insects
Institute of Guangdong Province in China (8-11); and
2) specimen field surveys by the authors from 2016
(3). After screening duplicates and poor data, 116
records were obtained for the construction of the final
model.

For present environmental data (1950-2000), a
total of 19 bioclimatic layers were downloaded
from  Worldclim  database  (www.worldclim.org)
(Supplementary Table S1, available in http://weekly.
chinacde.cn/). All data used for SDM had a spatial

annual mean
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resolution of 1 km? (30 arc seconds). The data of
distribution points and environmental variables were
inputted into MaxEnt software. The maximum
number of iterations was set to 2000, bootstrap
repeated 10 times, and random seed was turned on.
Then, the response curves and jackknife test functions
checked to analyze the importance of
environmental variables that affected the distribution
of T. rubrofasciata. The establishment of the model
needs to randomly select 75% of the distribution
points, and the test of the model is completed by data

were

of the remaining 25% of the occurrence points to
construct an optimal habitat model of 7. rubrofasciata.
The prediction results of MaxEnt model were tested by
the area under the receiver operating characteristic
curve (ROC). Maximum entropy modeling was used
with the MaxEnt software (version 3.3.3k, American
Museum of Natural History, NY, USA) for
quantifying relative risk of invasion and mapping of
the potential geographic distribution of 7. rubrofasciata
in China. A jackknife procedure was used to calculate
the significance of the contribution of each variable to
the model. The area under the receiver operating
characteristic curve [area under curve (AUC)] was used
to evaluate model performance. The potential range of
changes in the suitable areas under different scenarios

of climate change in the future was analyzed by using
the “distribution changes between binary SDMs” tool.
When performing the quick recursive to binary
conversion, the threshold value was 0.5. ArcMap was
loaded for all maps..

The MaxEnt model prediction has high AUC
(0.989) indicating good model performance for 7.
rubrofasciata  (Supplementary Figure S1, available in
http://weekly.chinacdc.cn/). The jackknife test showed
that the distribution of 7. rubrofasciata was largely
affected by annual mean temperature (Biol), mean
temperature of the coldest quarter (Bioll), and
minimum temperature of coldest month (Bio6)
(Figure 1). Annual mean temperature (Biol) explained
63.4% of the total variance and was thus identified as
the main factor affecting the spatial distribution of 7.
rubrofasciata. Species distribution maps showed that
Guangdong, Guangxi, Fujian, and Taiwan, China of
the study area were recognized as high potential
habitats of 7. rubrofasciata in the present conditions,
by 2050, and by 2070 (Figure 2). The averaged future
predictions of MaxEnt for 2050 and 2070 (binary
SDMs) revealed an expansion in suitable habitats of 7.
rubrofasciata of 180,433 km? and 167,495 km?
respectively, which reached more northern latitudes of
southern China (Figure 3).

Jackknife of area under curve for 7. rubrofasciata
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FIGURE 1. Relative predictive power of different environmental variables based on the jackknife of regularized training gain

in maximum entry modeling for T. rubrofasciata in China.
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FIGURE 2. Distribution maps of T. rubrofasciata under current and future climatic change condition (2050 and 2070) based

on A2a/HadCM3 scenario.

DISCUSSION

T. rubrofasciata, which was recorded as a potential
vector that can transmit American trypanosomiasis,
was the most widely distributed worldwide. During the
survey of 2016-2018, the habitats of 7. rubrofasciata
was widely recorded in southern China, as well as
exhibiting domestic and peri-domestic behavior
invading chicken coops and human dwellings.
However, due to its low density, more habitats would
likely be underrepresented, including, for example,
historical reports in Yunnan Province that were not
corroborated in current surveys (2). For this purpose,
we used MaxEnt to identify regions that offer
climatically suitable conditions for this species.

The discriminatory capacity of the model displayed
good predictive performance, which was also reflected
in the AUC values of over 0.95. Studies have indicated
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that potential hotspots of triatomine species diversity
in tropical and subtropical regions between 21°N and
24°S latitude and a major limiting factor of triatomine
distribution was temperature seasonality (/2-13). In
our study, after removing auto-correlated parameters
(Figure 1), MaxEnt indicated that the current
distribution of 7. rubrofasciata was more affected by
temperature variables (Biol, Bio6, and Bioll). Among
them, Biol (annual mean temperature) was the most
affected and explained 63.4% of the total variance. The
International Panel of Climate Change (IPCC) has
predicted that annual mean temperatures will increase
up to 5.8 °C by the end of this century (/4). As the
global climate warms, the risk of 7. rubrofasciata
expansion may increase.

The information obtained from the predictive maps
of the current distribution of 7. rubrofasciata was

compared to those assembled from the series of future
predictions in 2050 and 2070 with a medium GHG
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FIGURE 3. Distribution maps of T. rubrofasciata under future climatic change condition (2050 and 2070) based on binary

species distribution modelling (SDMs).

concentration scenario (RCP26). Global climate
models trained on the existing potential distribution
showed a relatively stable estimate for the amount of
land area that was classified as suitable for 7.
rubrofasciata. The two emissions scenarios we modeled
(RCP  26) produced very similar predicted
distributions,  although the pathway of high
concentrations of GHG predicted slightly less overall
area (Figure 2). There was a predicted shift in the
distribution with suitable areas moving from lower
latitude and presumably warmer climates to climates at
higher latitude where conditions may become more
suitable  (Figure 2). Regions of high predicted
probability in 2050 were found in Guangxi,
Guangdong and Hainan, and good suitable areas were
expanded in Southern of Fujian, Jiangxi, Hunan,
Guizhou, and Yunnan.

In general, using this model, it was easy to find
climatically suitable habitats of 7. rubrofasciata in
China. It was useful for targeting surveillance and
increasing the efficiency and accuracy of public health
investigations and vector control efforts in China in
the future. Background surveys should focus on
southern China and set up more sampling survey
points, while a small number of sampling survey points
could be set up in the southern areas of Yunnan,
Guizhou, Jiangxi, and Fujian.

However, the present study has some limitations.
Although more than 100 records were obtained for the
construction the model, the data was mainly
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concentrated in Guangdong and Guangxi, so its
representation has certain limitations. More data
would be collected to add to the model to get more
accurate prediction. The widely used “MaxEent
software for modeling species distributions from
presence-only data tends to produce models with high-
predictive performance but low-ecological
interpretability, which are more complex but not
necessarily predictively better-than subset selection.
The simpler models implement two different kinds of
model fitting: maximum entropy fitting for presence-
only data and logistic regression for presence-absence
data would be field. With
improvement of the model, some model which could
cover the shortage of the data, eg, MIAmaxent R
package etc, which would be involved in the habitats of
T rubrofasciata prediction in future study (75).
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SUPPLEMENTARY TABLE S1. Climatic variables used for predicting the potential distribution of Chagas disease vector
Triatoma rubrofasciata in China based on MaxEnt.

Code Variable Source

Bio1 Annual mean temperature http://www.worldclim.org/
Bio2 Mean diurnal range http://www.worldclim.org/
Bio3 Isothermality http://www.worldclim.org/
Bio4 Temperature seasonality http://www.worldclim.org/
Bio5 Max temperature of the warmest month http://www.worldclim.org/
Bio6 Min temperature of the coldest month http://www.worldclim.org/
Bio7 Temperature annual range http://www.worldclim.org/
Bio8 Mean temperature of the wettest quarter http://www.worldclim.org/
Bio9 Mean temperature of the driest quarter http://www.worldclim.org/
Bio10 Mean temperature of the warmest quarter http://www.worldclim.org/
Bio11 Mean temperature of the coldest quarter http://www.worldclim.org/
Bio12 Annual precipitation http://www.worldclim.org/
Bio13 Precipitation of the wettest month http://www.worldclim.org/
Bio14 Precipitation of the driest month http://www.worldclim.org/
Bio15 Precipitation seasonality http://www.worldclim.org/
Bio16 Precipitation of the wettest quarter http://www.worldclim.org/
Bio17 Precipitation of the driest quarter http://www.worldclim.org/
Bio18 Precipitation of the warmest quarter http://www.worldclim.org/
Bio19 Precipitation of the coldest quarter http://www.worldclim.org/

Sensitivity vs. 1-specificity for ZC

B Training data (AUC=0.989)
B Test data (AUC=0.980) |
B Random prediction (AUC=0.5)

0 010203 040506070809 1.0
1-specificity (fractional predicted area)

SUPPLEMENTARY FIGURE S1. Receiver operating characteristic curve [abbreviated as area under curve (AUC)] was used
to evaluate model performance by MaxEnt model.
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