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Abstract
Climate change has been known to cause variations in the geographically suitable areas for the schistosome-transmitting Oncomelania
hupensis (O. hupensis). The spread of snails not only depends on the degree of warming but also on the socioeconomic development of the next
few decades. Shared socioeconomic pathways (SSPs) published by CMIP6 consider carbon emission pathways as well as influences of distinct
types of social development and land use on the regional climate, providing the possibility to accurately evaluate the impact of socioeconomic
development and climate variation on the spread of O. hupensis. This study employed SSP126, SSP245, SSP370, and SSP585 and the correlative
approach to explore the impacts of climate change and socioeconomic development on the potential diffusion areas for O. hupensis in China.
The results exhibited strong evidence that O. hupensis will spread in the north of the middle and lower reaches of the Yangtze River and
disappear from a small part of its current southern habitat, whereas in Sichuan and Yunnan, O. hupensis may spread slightly to the southeast. The
projection also demonstrated that fossil fuel-driven development (SSP585) will be more conducive to the spread of O. hupensis breeding sites in
the 2030s, whereas the continuous increase in snail breeding habitats under the regional rivalry path (SSP370) may lead to great challenges in
snail control in the long term (2020e2080).
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1. Introduction

Schistosomiasis is a globally endemic and neglected tropical
disease that infects about 250 million people, with 143,000
disability-adjusted life years every year (Anisuzzaman and Tsuji,
2020). Since the estimated schistosomiasis infection rate is based
on the discovery of eggs and disease burden without considering
growth retardation, cognitive impairment, and organ damage, the
number of infections and the disease burden caused by schisto-
somiasis are seriously underestimated (King and Galvani, 2018).
In China, schistosomiasis is caused by Schistosoma japonicum,
which completes its life cycle through a single intermediate host,
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Oncomelania hupensis (O. hupensis), andmore than40 species of
definitive hosts (bovines and other mammals) (McManus et al.,
2018). The distribution of snails has a high correlation with the
prevalence of schistosomiasis, and snail control is an effective
measure to eliminate schistosomiasis at the stage of transmission
interruption. Although molluscicides and environmental modi-
fication have been conducted to control snails, their growth area is
still relatively large (maintained at 3.6 billion km2), with newly
emerging and reemergent habitats continuing to appear (Yang
et al., 2019; Gong et al., 2021). In particular, due to the rapid
development of the Yangtze River economic belt and the
completion of the South-to-North Water Diversion Project, the
exchanges of personnel and materials between the north and the
south have become more frequent, and the risk of O. hupensis
spreading to non-epidemic areas has increased considerably via
plants, ships, and flooding (Utzinger et al., 2011).

Climate change and socioeconomic development may lead to
expansions in the geographical distributions of disease vectors,
hosts, and pathogens, consequently increasing the potential harm
due to vector-borne infectious diseases (Caminade et al., 2019).
Numerous studies have demonstrated that snailsmove northward
on a large scale based on old climate research and mechanistic
models (Zhou et al., 2008; Yang et al., 2018). Previous pre-
dictions in the distribution of O. hupensis were mostly based on
the representative concentration pathway published by the
Coupled Model Intercomparison Project Phase 5 (CMIP5),
which only considered the carbon emission (Yang et al., 2018;
Zhu et al., 2017), indicating increased suitability and range
expansion in the futurewith an eastward and northward shift inO.
hupensis. The future risks of this disease under distinct socio-
economic development and the carbon emission scenarios
remain miscomprehended. A new set of emission scenarios
driven by shared socioeconomic pathways (SSPs) published by
CMIP6 considers the impact of carbon emissions, distinct social
developments, and other factors on regional climate, which fa-
cilitates evaluation of the impact of policies and development
paths on disease vectors (Zhai et al., 2020).

Previous studies mainly focused on the consequences of
greenhouse gas emissions and climate warming on snail
diffusion and lacked the potential impact of human develop-
ment patterns, development strategies, the synergy of climate
change, and development paths on snail diffusion. In addition,
previous studies paid disproportionately much attention to the
influence of a certain climate scenario on the potential distri-
bution of O. hupensis and were inadequate in comparative
research on multi-scenario simulation. The shared socioeco-
nomic paths provide more emission scenarios than RCPs and
can provide more reasonable simulation results for regional
climate prediction, mitigation, and adaptation research. To
bridge these persistent gaps significant to informing public
health, this research aims to study the temporal and spatial
evolution characteristics of snail diffusion under the influence
of climate change, social development, and joint action based
on the four SSPs. The results will provide benefits in estab-
lishing a scientific basis for the subsequent monitoring and
control of O. hupensis and a reference for evaluating policies
and social development models for vector proliferation.
2. Data and methods
2.1. Study area and data collection
By incorporating a combination of systematic sampling and
environmental sampling methods, a snail survey was con-
ducted once a year in environments infested or possibly
infested by snails. Snails were collected in the survey area
along with latitude and longitude information and retrieved to
the laboratory for dissection and microscope examination to
identify the infection and mortal status (Xu et al., 2020). The
monitoring activities were conducted by the county level
center for disease control or schistosomiasis control institute,
and the results were sent to the National Institute of Parasitic
Diseases. The point incorporated here was obtained from the
2005e2019 data in the National Schistosomiasis Surveillance
System that includes records of all O. hupensis found in all
schistosomiasis-endemic areas for each survey site (Fig. 1).
Infection of the intermediated snail host of S. japonicum is
mainly distributed in seven southern Chinese provinces in
close proximity to the Yangtze River.

Both prevailing (1970e2000) and future (2021e2040,
2041e2060, 2061e2080) climate data were downloaded from
the World Climate database (https://worldclim.org/) at a
spatial resolution of 5 km. The Beijing Climate Center
Climate System Middle-Resolution Model version (BCC-
CSM2-MR) that has a high capacity for simulating the tem-
perature in China (Wu et al., 2019), was selected for the future
climate data. Four SSPs were selected comprising SSP126,
SSP245, SSP370, and SSP585 scenarios and bioclimatic data
(Table 1) for three future periods of the 2030s (2021e2040),
2050s (2041e2060), and 2070s (2061e2080).
2.2. Model building and evaluation
The correlative methods employed environmental variables
associated with the landscape to simulate the distribution of O.
hupensis (Johnson et al., 2019). This geographical distribution
is associated with biological interactions and diffusion effects.
Therefore, the suitable habitat simulated for O. hupensis was
relatively close to its actual niche. Furthermore, the correlative
method is based on geographical events and large-scale
environmental dimensions, avoiding the challenges caused
by individual characteristics at the landscape level (Peterson
et al., 2015).

We employed the BIOMOD2 package in R4.0.0 (R
Development Core Team) to build a distinct set of correlative
models using 10 model algorithms (Arenas-Castro et al., 2020;
Thuiller et al., 2009; Thuiller, 2014), namely, surface range
envelope (SRE), generalized linear model, generalized addi-
tive model (GAM), multivariate adaptive regression spline,
generalized boosted model, classification tree analysis, flexible
discriminant analysis, maximum entropy (MaxEnt), artificial
neural network, and random forest (RF).

In order to reduce the uncertainty of a single model and
improve the accuracy of the predictions obtained, we used two
ensemble models to predict the changes in the distribution of

https://worldclim.org/


Fig. 1. Water distribution and locations of O. hupensis in the study area.

Table 1

Abbreviations and descriptions of bioclimatic variables used.

Factor Description Unit

Bio1 Average annual temperature �C
Bio2 Mean diurnal temperature range �C
Bio3 Isothermality (bio2/bio7) (�100) e
Bio4 Temperature seasonality (standard deviation � 100) e

Bio5 Maximum temperature in the warmest month �C
Bio6 Minimum temperature in the coldest month �C
Bio7 Temperature annual range �C
Bio8 Mean temperature in the wettest quarter �C
Bio9 Mean temperature in the driest quarter �C
Bio10 Mean temperature in the warmest quarter �C
Bio11 Mean temperature in the coldest quarter �C
Bio12 Annual precipitation mm

Bio13 Precipitation in the warmest month mm

Bio14 Precipitation in the driest month mm

Bio15 Precipitation seasonality (coefficient of variation) e

Bio16 Precipitation in the wettest quarter mm

Bio17 Precipitation in the driest quarter mm

Bio18 Precipitation in the warmest quarter mm

Bio19 Precipitation in the coldest quarter mm
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suitable habitats for O. hupensis (Harrigan et al., 2014; Araújo
and New, 2007). Committee averaging (CA) was used to
convert the predicted probability of each model into a binomial
distribution (with or without committee) before calculating the
average value to test the consistency of the model. Theweighted
mean (WM) of probabilities method was employed to evaluate
the performance of each model by applying different weights to
average the predicted probabilities.

Cross-validation evaluations were conducted for the models
of the distribution data, where 75% of the data were used as
training samples and 25% as test samples (Tan et al., 2020; Li
et al., 2017). The true skill statistics (TSS), area under the
curve (AUC), and Kappa statistics were utilized as indicators
to evaluate each model (Harrigan et al., 2014). The AUC is not
affected by the occurrence rates of distribution points and the
judgment threshold. TSS indicates the ability of the predicted
result to distinguish between ‘yes’ and ‘no’, where it does not
depend on the incidence of the distribution points; however, it
is affected by the threshold. The Kappa statistic describes the
accuracy of the prediction relative to random occurrence,
where it is affected by both the occurrence rate and threshold
of distribution points.
2.3. Visual and statistical analyses of suitable habitat
patterns
We employed the classification method described in the
Fifth Assessment Report of the Intergovernmental Panel on
Climate Change (IPCC, 2013), as follows: non-suitable habitat
(0e0.33), low suitability habitat (0.33e0.66), moderate suit-
ability habitat (0.66e0.90), and high suitability habitat
(0.90e1.00). We compared the suitable habitats for O.
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hupensis in future climate scenarios with the current suitable
areas to obtain the changes in its geographical distribution:
newly gained suitable habitats or potential future diffusion
areas (gain), lost suitable habitats (lost), unchanged suitable
habitats (presence), or no suitable habitats (absence). The
current and future grid numbers for suitable habitats were
evaluated to determine the changes in the distribution of O.
hupensis.

3. Results
3.1. Accuracy of projection by correlative niche models
As depicted in Table 2, RF (TSS ¼ 0.970, AUC ¼ 0.997,
Kappa ¼ 0.970) obtained the highest statistical accuracy and
the most stable model each time, followed by GAM
(TSS ¼ 0.969, AUC ¼ 0.996, Kappa ¼ 0.962), however the
performance of SRE was relatively poor (TSS ¼ 0.595,
AUC ¼ 0.798, Kappa ¼ 0.594). According to the model
evaluation index (Table A1), except for SRE, the mean of TSS,
AUC, and Kappa values for all model algorithms were greater
than 0.70, 0.80, and 0.80, respectively, indicating the con-
struction of successful models. The two ensemble (CA and
WM) models performed better in comparison to the single
models. In particular, the score for the WM ensemble model
(TSS ¼ 0.972, AUC ¼ 0.999, Kappa ¼ 0.972) was slightly
higher than that for the CA ensemble model (TSS ¼ 0.971,
AUC ¼ 0.998, Kappa ¼ 0.972). Therefore, the subsequent
simulations were obtained mainly based on the WM ensemble
model.
3.2. Assessment of environmental impact factors
Fig. 2. Contribution of environmental factors in ensemble models.
The BIOMOD2 platform was employed to calculate the
factor weights in each model before comprehensively multi-
plying the weights in the ensemble models to obtain the final
weight of a single factor. The results demonstrated that among
the 19 factors employed in the models, the top six factors of
variable importance (bio6, bio7, bio1, bio12, bio11, and bio9)
had the highest weights, with a cumulative weight of 71.2%,
Table 2

Accuracy test results for different model algorithms.

Model TSS

Mean SD CV

Artificial neural network 0.867 0.040 0.046

Classification tree analysis 0.935 0.007 0.007

Flexible discriminant analysis 0.915 0.006 0.006

Generalized additive model 0.969 0.002 0.002

Generalized boosted model 0.928 0.004 0.005

Generalized linear model 0.841 0.041 0.049

Multivariate adaptive regression spline 0.911 0.013 0.014

Maximum entropy 0.734 0.028 0.038

Random forest 0.970 0.004 0.004

Surface range envelope 0.595 0.009 0.015

Note: TSS, true skill statistics; AUC, area under the receiver operating characteris
thereby indicating that these six factors were most important
for the distribution of habitats suitable for O. hupensis (Fig. 2).
Among these six factors, five factors were related to temper-
ature, and thus temperature was the main factor that affected
the distribution of suitable habitats for O. hupensis. Further-
more, BIOMOD2 was used to integrate the response curves for
environmental factors in single models to obtain comprehen-
sive response curves for every single factor in the integrated
model. The suitability response curves of the six factors with
greater effects are shown in Fig. 3. The suitable range in bio6
was more than 0 �C, which reflects the low temperature
tolerance threshold of O. hupensis (Fig. 3).
3.3. Dynamic distribution of O. hupensis under SSPs
The WM prediction results demonstrated (Fig. 4) that the
high suitability habitats for O. hupensis in the base period
(2005e2019) are mainly distributed in the middle and lower
reaches of the Yangtze River, central Sichuan province, and
the northwestern part of Yunnan province, which is consistent
with its current actual distribution. O. hupensis in lake areas
and mountainous areas exhibit contrasting proliferation char-
acteristics under SSPs, where O. hupensis will spread in the
north of the middle and lower reaches of the Yangtze River
AUC Kappa

Mean SD CV Mean SD CV

0.964 0.014 0.015 0.867 0.040 0.046

0.985 0.003 0.003 0.935 0.007 0.007

0.978 0.003 0.003 0.916 0.006 0.006

0.996 0.000 0.000 0.962 0.002 0.002

0.992 0.001 0.001 0.928 0.004 0.005

0.924 0.027 0.029 0.841 0.041 0.049

0.984 0.003 0.003 0.911 0.013 0.014

0.877 0.016 0.018 0.733 0.028 0.038

0.997 0.000 0.000 0.970 0.004 0.004

0.798 0.005 0.006 0.594 0.009 0.015

tic curve; SD, standard deviation; CV, coefficient of variation.



Fig. 3. Probabilistic relationships between dominant environmental factors and suitable habitat for O. hupensis.

Fig. 4. Current (2005e2019) suitable habitats for O. hupensis based on the weighted mean of probabilities ensemble model.
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Fig. 5. Distribution of suitable habitats for O. hupensis under the four SSPs.

Fig. 6. Net rate of change in suitable habitats for O. hupensis under SSPs (net

rate of change ¼ (base area þ gain area � loss area)/base area � 100%).
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and disappear from a small part of its southern habitat,
whereas O. hupensis may spread slightly to the southeast in
Sichuan and Yunnan (Fig. 5). The suitable habitats determined
under SSPs illustrated that the potential diffusion areas are
mainly distributed in the northern part of Jiangsu and Anhui
and the southern part of Shandong and Henan. By 2050, the
suitable habitat is projected to cover the whole of Jiangsu,
Anhui, and Hubei, as well as most of Sichuan, Yunnan,
Chongqing, and Guizhou, eventually moving northward. By
2070, the suitable habitat will cover most areas of Henan and
Shandong in the north.

As depicted in Fig. 6, the suitable habitat areas under
SSP126, SSPP245, SSP370, and SSP585 scenarios were
found to increase by more than 20% in comparison to the base
period (2005e2019). In particular, the growth of the suitable
habitat areas was projected to be the most stable and moderate
under SSP126, with a net increase of 20.4%e27.8%. The
growth rates were determined as higher under SSP370 and
SSP245 by 2070 with 62.8% and 54.7%, respectively. In
different periods, climate scenarios have different effects on
the suitable habitats for O. hupensis. SSP585, SSP245, and
SSP370 were found to have the greatest impacts on the
distribution of O. hupensis in the 2030s, 2050s, and 2070s,
respectively. The effects of SSP245 and SSP370 on the
possible increases in suitable habitats were predicted to be
greater than those of SSP126 and SSP585.
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4. Discussion

This study reveals that the greater the challenge of climate
mitigation and climate change adaptation, the greater the risk
of snail proliferation. In comparison to changes in the prolif-
eration range, greenhouse gas emissions have a positive
impact on the distribution range of the possibly appropriate
growing region for O. hupensis, as evidenced by the steady
expansion of the suitable area over time and the shrinking of
the risk-free area. The impact on the suitable areas under
SSP126 was relatively moderate, whereas the suitable areas
under SSP585 tended to rise initially and then diminish.
SSP126 represents a green development road in which humans
can control global warming within 2 �C, which explains that
the spread of snails is at the bottom in the four scenarios
(Garcı́a-Pe~na and Rubio, 2021). SSP585 is a high-speed
development road dominated by fossil fuels; strong eco-
nomic growth and perfect infrastructure promote relatively
low adaptation challenges to climate change (Wu et al., 2021).
Therefore, snail proliferation follows a similar evolutionary
pattern of ‘initially increasing, then swiftly decreasing.’
SSP245 has a certain dependence on fossil fuels, and the
challenge of climate change mitigation is at a medium level.
Therefore, the snail diffusion in this scenario is also medium.
SSP370 is a rugged development path in which regional
inequality continues to worsen, global issues such as the
environment are not coordinated, and high climate change
challenges exist (Theodoridis et al., 2021). Therefore, the
diffusion of O. hupensis continues to increase and reach the
highest in the 2070s in the four scenarios.

In contrast to the earlier CMIP5 evaluation (Yang and
Bergquist, 2018; Zhu et al., 2017), we discovered that O.
hupensis has distinct proliferation characteristics in lake and hilly
environments. To be more specific, this study demonstrates that
O. hupensis will spread in the north of the middle and lower
reaches of the Yangtze River, and a little portion of its southern
regionwill vanish,whileO.hupensismayextend somewhat to the
southeast in Sichuan and Yunnan. The disparity might be due to
the fact that SSPs not only consider carbon emissions but also
incorporate factors such as social development and land use. O.
hupensis prefers a warm and humid environment with sufficient
water, and its resistance to cold is limited (Niu et al., 2019). The
QinlingeHuaihe line is the 0 �C isotherm in January, making it
unsuitable for O. hupensis to reside close or north of the Huaihe
River. However, under climatewarming, the temperaturewill rise
in the nearby areas, and it may become suitable for the growth of
O. hupensis. In addition, climate change will lead to increases in
temperature in South China as well as reduced precipitation, and
the frequency of extreme high temperature events will increase
significantly (Gao et al., 2019). These changesmight explainwhy
certain O. hupensis-friendly environments in South China have
vanished.

This study illustrated that the climate compartment model
represented by SRE was not effective at simulating the dis-
tribution of O. hupensis, whereas models such as RF and
GAM obtained more accurate simulations. These results were
in line with existing studies (Zhang et al., 2020; Xia et al.,
2019). Nevertheless, these better single models also have the
problem of overfitting. The use of an ensemble model cannot
solve the limitations of a specific model; however, it integrated
the common results obtained by each model to improve the
simulation accuracy for O. hupensis spread (Uusitalo et al.,
2020; Assefa et al., 2020).

This study also is subjected to some limitations. The pre-
dicted geographic distribution may be wider than the actual
range of O. hupensis because we did not consider the impact
of human activities such as snail control (Stensgaard et al.,
2013). Another limitation is niche conservatism (Wiens
et al., 2010; Sales et al., 2017), where it is assumed that the
adaptability of O. hupensis to the environment will not change
with variations in the environment. Future research requires an
emphasis on the factors affecting the fine-scale distribution of
O. hupensis and an attempt to use a process-based simulation
to further improve the simulation effect.

The Healthy China 2030 Program highlights that the vector
control level is an important indicator of healthy cities and vil-
lages. Under the influence of environmental changes and social
development,O. hupensis shows a trend of further spread, which
adds uncertainty to eliminating schistosomiasis. The OneHealth
approach should be applied to schistosomiasis control, whereO.
hupensis, the environment, and human and animal infections
should be integrated into the monitoring and control system to
eliminate the hidden danger of schistosomiasis (WHO, 2020;
Deol et al., 2019; Zinsstag et al., 2018; L�eger et al., 2020).

5. Conclusion

This study exhibits strong evidence that O. hupensis will
spread in the north of the middle and lower reaches of the
Yangtze River and that a small part of its southern part will
disappear, whereas O. hupensis may spread slightly to the
southeast in Sichuan and Yunnan under four SSPs. In the near
future (2020e2040), fossil fuel-driven development (SSP585)
will be more conducive to the spread of O. hupensis breeding
sites. The continuous proliferation of O. hupensis breeding
habitats under the regional rivalry path (SSP370) will make its
control challenging in the long term (2020e2080). While
paying attention to the spread of snails caused by climate
warming, we must not ignore the pressure of the spread of
snails caused by environmental and climatic factors induced
by vicious regional competition.
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