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Abstract: Leishmaniasis is a neglected tropical disease that seriously influences global public health.
Among all the parasitic diseases, leishmaniasis is the third most common cause of morbidity after
malaria and schistosomiasis. Circular RNAs (circRNAs) are a new type of noncoding RNAs that are
involved in the regulation of biological and developmental processes. However, there is no published
research on the function of circRNAs in leishmaniasis. This is the first study to explore the expression
profiles of circRNAs in leishmaniasis. GO and KEGG analyses were performed to determine the
potential function of the host genes of differentially expressed circRNAs. CircRNA–miRNA–mRNA
(ceRNA) regulatory network analysis and protein–protein interaction (PPI) networks were analyzed
by R software and the STRING database, respectively. A total of 4664 significant differentially
expressed circRNAs were identified and compared to those in control groups; a total of 1931 were
up-regulated and 2733 were down-regulated. The host genes of differentially expressed circRNAs
were enriched in ubiquitin-mediated proteolysis, endocytosis, the MAPK signaling pathway, renal cell
carcinoma, autophagy and the ErbB signaling pathway. Then, five hub genes (BRCA1, CREBBP, EP300,
PIK3R1, and CRK) were identified. This study provides new evidence of the change of differentially
expressed circRNAs and its potential function in leishmaniasis. These results may provide novel
insights and evidence for the diagnosis and treatment of leishmaniasis.
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1. Introduction

Leishmaniasis, a zoonotic disease, is one of the neglected tropical diseases that can
seriously influence global public health [1]. There are three main types of leishmaniasis: vis-
ceral leishmaniasis, cutaneous leishmaniasis and mucocutaneous leishmaniasis. It is widely
distributed around the world, present in 101 countries, and is transmitted through the bite
of infected female sandflies, whose hosts are animals such as canids, rodents, marsupials,
hyraxes, and human beings [2]. Leishmaniasis is an obligate intracellular pathogen that is
mainly parasitic on host cells, and it is one of the parasitic diseases that can be dangerous
to human health [3]. Among all the parasitic diseases, leishmaniasis is the third highest
cause of morbidity after malaria and schistosomiasis in terms of disability adjusted life
years (DALYs) [4]. However, it is the second most common cause of mortality after malaria.
According to publication reports, there are 101 countries and approximately 350 million
people living in leishmaniasis-endemic areas [5]. Most leishmaniasis patients live in im-
poverished areas, which makes prevention, diagnosis, and treatment very difficult [6].
Therefore, more than 2 million people are afflicted by leishmaniasis worldwide each year,
resulting in an estimated 40,000 deaths [7]. This parasite also has a high recurrence rate;
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patients may relapse after 6–12 months despite receiving the appropriate treatment [8].
Moreover, if untreated, patients can develop multisystem disease or a secondary infection,
potentially leading to death [9]. Detecting pathogens is the traditional way to diagnose
leishmaniasis through the smear or culture tests of bone marrow aspirate [10]. However,
bone marrow aspiration is not only painful, but its protozoa density is also extremely
low, and it is easy to miss the diagnosis. In addition to this, visceral leishmaniasis has no
specific clinical symptoms; it is easy to confuse it with other diseases, especially in endemic
areas [11,12]. Therefore, it is also necessary to conduct epidemiological investigations.
Furthermore, the occurrence of minimally symptomatic and completely asymptomatic
and subclinical disease is considered an important aspect of the epidemiology of visceral
leishmaniasis, which requires clinicians to determine more epidemiological characteris-
tics of leishmaniasis [13]. Hence, it is important to research the mechanism of visceral
leishmaniasis in order to find effective diagnostic biomarkers.

Circular RNAs (circRNAs) were first discovered in RNA viruses in 1976 [14]. With the
development of high-throughput sequencing technology, thousands of circRNAs species
have been detected, and this number is still increasing. Although circRNAs are a new
type of the non-coding RNAs with covalent closed-loop structures, some circRNAs have
protein-coding potential [15,16]. He et al. first discovered that circRNAs have protein-
coding capacity in his research on the hepatitis D virus [17]. Published research shows
that the post-translation products of circRNA can participate in multiple physiological
processes in the human body, for example, preventing the linear translation product from
being degraded by ubiquitin proteases [18]. Moreover, circRNAs can competitively bind
with microRNA (miRNA) and act as a miRNA sponge, thereby affecting the regulation
of miRNA on target genes [19]. Previous research has found that when circACVR2A is
overexpressed, it can act as a sponge for miRNA-626 to regulate EYA4 gene expression
through the enhancement of cell proliferation, migration, and invasion in bladder cancer
cells [20]. Rong et al. found that has_circ_0002577 can act as an miR-197 sponge to
regulate the proliferation and invasion of endometrial cancer cells [21]. CircRNAs are
more resistant to exonuclease degradation than linear RNA. Therefore, circRNAs have
greater stability [22]. Many studies have shown that they are related to various diseases,
including cancer [23], cerebrovascular diseases [24], systemic lupus erythematosus [25] and
so on. However, there is no published study on the function and molecular mechanisms of
circRNAs in leishmaniasis.

Zoonotic diseases seriously influence human health through spillover effects from
their impact on animals and the environment [26]. In order to reduce the harm of zoonotic
diseases, this study, according to the different expressions of circRNAs in patients, finds
biomarkers of leishmaniasis. Therefore, the differentially expressed circRNAs and miRNAs
were screened by high-throughput sequencing. Furthermore, the functionals and pathways
of host genes were analyzed by gene ontology (GO) and the Kyoto Encyclopedia of Genes
and Genomes (KEGG). In addition, the correlation of all genes was performed though
protein–protein interaction (PPI) and the competing endogenous RNAs (ceRNA) network.
This study may provide assistance for leishmaniasis diagnosis and expand the horizons of
targeted gene therapy.

2. Materials and Methods
2.1. Clinical Samples

According to data from the Infectious Disease Reporting Information Management
System of the Chinese Center for Disease Control and Prevention, leishmaniasis is most
prevalent in Yangquan, China. The sera of 3 leishmaniasis patients and 3 healthy persons
(controls) were obtained from the Yangquan Center for Disease Control and Prevention.

2.2. RNA Extraction

Total RNA was extracted using TRIzol reagent (Thermo Fisher Scientific, Waltham,
MA, USA). Additionally, the concentrations of RNA samples were measured, and purity
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was determined with an ultraviolet spectrophoto-meter (NanoDrop ND-1000, NanoDrop,
Wilmington, DE, USA). RNA integrity and gDNA contamination were assessed by agarose
gel electrophoresis.

2.3. Library Construction and RNA Sequence Analysis

The RNA libraries were constructed using RNA samples with the RNA Integrity
Number (RIN) ≥ 8. Subsequently, the RNA libraries were controlled for quality by the Bio-
Analyzer 2100 system. The RNA-Seq libraries were performed in NovaSeq6000 (San Diego,
CA, USA). RNA-seq data were analyzed using the Tuxedo protocol. The reads were
aligned to GRCh38.p13 (http://asia.ensembl.org/Homo_sapiens/Info/Index (accessed on
12 March 2022)) by TopHat (version 2.1.1, Daehwan Kim and Steven Salzberg, MD, USA).
Additionally, the transcript assembly and abundance were determined using Cufflinks
(version 2.1.1, the lab of Cole Trapnell, Washington, DC, USA). circRNAs/miRNAs were
analyzed as significantly different expressions with an absolute fold change ≥ 2 and with
p < 0.05.

2.4. Screening od Differentially Expressed circRNAs and miRNAs

Differentially expressed circRNAs-/-miRNAs were determined and data were nor-
malization using R software (v4.0.3, Hadley Wickham, IA, USA). A t-test was used to
identify differentially expressed circRNAs and miRNAs with a significance level ≤ 0.05.
The differentially expressed circRNAs and miRNAs thresholds were analyzed with a fold
change ≥ 2. Moreover, the fold change and p-value were used to identify the top 10 up-and
down-regulated differentially expressed circRNAs and miRNAs in leishmaniasis patients
and local normal health persons. Volcano plots were visualized by ggplot2 in R software
(v4.0.3).

2.5. Functional and Pathway Enrichment Analyses

Gene ontology (GO) analysis was used to highlight the biological processes (BP),
molecular functions (MF), and cellular components (CC) of genes. Hence, the host genes
of differentially expressed circRNAs were analyzed for their potential function. Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathway analyses were performed to find
the functional attributes of the host genes using clusterProfiler (v4.0.2, Vince Carey, Boston,
MA, USA); p < 0.05 was set as the statistically significant difference.

2.6. PPI Network Construction and Regulation ceRNA Network

The STRING database (https://string-db.org/ (accessed on 23 March 2022)), an online
biological database, can display interactions of proteins and genes. Then, the potential rela-
tionship of hosts genes and proteins for differentially expressed circRNAs was determined.
The PPI network (PPI score > 0.8) was used to accomplish this Cytoscape (version 3.6.1,
NIGMS, Bethesda, USA). The interactions between circRNAs and miRNA were identified
by TargetScan and miRanda databases. Subsequently, mRNAs were predicted through re-
sponse elements-MiRNAs by miRTarBase (version 2, Hsien-Da Huang, HongKong, China),
miRWalk (version 3, University of Heidelberg, Heidelberg, Germany), miRDB (Xiaowei
Wang, Washington University School of Medicine in St. Louis, Washington, DC, USA) and
TargetScan (version 7.1, Bartel laboratory, MA, USA) software. Finally, an endogenous
competitive ceRNA (circRNAs–miRNA–mRNA) network was constructed using Cytoscape
software, with a p value < 0.05.

3. Results
3.1. The Differential Expression of Serum circRNAs and miRNAs

According to the statistical criteria of fold change ≥ 2 and p < 0.05, a total of 4664 significant
differentially expressed circRNAs were identified compared with those in the control
groups, of which 1931 were up-regulated and 2733 were down-regulated. Stratified clus-
ter analysis showed that the circRNA expression patterns were distinguishable between
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leishmaniasis patients and healthy control group (Figure 1A), and volcano plots were used
to show the significant differentially expressed circRNAs in the leishmaniasis patients’
group (Figure 1B). The top 10 up- (Table 1) and down-regulated (Table 2) circRNAs are
listed in the tables in this paper. Under the same statistical screening conditions, there were
57 significant differentially expressed miRNAs, including 28 that were up-regulated and
29 that were down-regulated (Figure 2A,B). Similarly, the details of the top 10 up- (Table 3)
and down-regulated (Table 4) differentially expressed miRNAs are listed.

1 
 

 
Figure 1. Differentially expressed circRNAs profiles. The heatmap (cluster analysis) was used to
detect the significant differentially expressed circRNAs (A). Red represents high expression and blue
represents low expression of circRNAs. Volcano plots were used to assess the circRNAs (B) expression
variation. The values of X- and Y-axes in the scatter plot are averaged normalized values of each
sample. Fold change ≥ 2, p < 0.05.

Table 1. The top 10 up-regulated circRNAs in Leishmaniasis patients compared to healthy con-
trol group.

circRNA ID logFC p Value Regulate Significant

chr13: 30251931_30257867 10.54691 1.03 × 10−130 up yes
chr 6: 31271073_31355592 10.32427 3.57 × 10−116 up yes

chr 13: 30280063_30283791 9.30495 4.25 × 10−67 up yes
chr 6: 29887955_29942626 8.557338 2.02 × 10−44 up yes
chr 6: 29829418_29888742 8.551388 2.84 × 10−44 up yes
chr13: 30621764_30647057 8.339884 2.45 × 10−39 up yes
chr 1: 35850157_35851053 8.100131 2.25 × 10−34 up yes

chr1: 244408712_244430099 7.772076 1.52 × 10−28 up yes
chr 7: 77083887_77098951 7.563262 2.43 × 10−25 up yes

chr 6: 3410188_3438555 7.515168 1.18 × 10−24 up yes
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Table 2. The top 10 down-regulated circRNAs in leishmaniasis patients compared to healthy con-
trol group.

circRNA ID logFC p Value Regulate Significant

chr 6: 32521905_32581838 −7.77687 1.49 × 10−22 down yes
chr 12: 2866393_2872244 −7.14883 7.86 × 10−16 down yes

chr17: 16034765_16040494 −7.14883 7.86 × 10−16 down yes
chr 1: 11016844_11020599 −6.89104 1.11 × 10−13 down yes
chr11: 20407911_20426865 −6.36747 3.68 × 10−10 down yes
chr17: 63666940_63685578 −6.36747 3.68 × 10−10 down yes
chr 1: 23971573_23972012 −6.17483 4.15 × 10−9 down yes

chr2: 171435083_171458075 −6.12236 7.68 × 10−9 down yes
chr1: 235812971_235833667 −6.06791 1.43 × 10−8 down yes

chr12: 102269600_102315490 −6.06791 1.43 × 10−8 down yes

1 
 

 
Figure 2. Differentially expressed miRNAs profiles. The heatmap (cluster analysis) was used to
detect the significant differentially expressed miRNAs (A). Red represents high expression and blue
represents low expression of miRNAs. Volcano plots were used to assess the miRNAs (B) expression
variation. The values of X- and Y-axes in the scatter plot are averaged normalized values of each
sample. Fold change ≥ 2, p < 0.05.

Table 3. The top 10 up-regulated miRNAs in leishmaniasis patients compared to healthy control group.

miRNA ID logFC p Value Regulate Significant

hsa-miR-483-3p 3.906015 6.71 × 10−5 up yes
hsa-let-7b-3p 3.784429 0.000352 up yes

hsa-miR-486-3p 3.369297 0.000199 up yes
hsa-miR-16-2-3p 2.870342 1.19 × 10−7 up yes
hsa-miR-25-5p 2.467263 2.58 × 10−5 up yes
hsa-let-7d-3p 2.430329 7.36 × 10−15 up yes
hsa-miR-5100 2.400199 1.86 × 10−9 up yes

hsa-miR-6877-5p 1.977799 0.001816 up yes
hsa-miR-1260b 1.82933 6.81 × 10−6 up yes
hsa-miR-877-5p 1.79051 2.06 × 10−5 up yes
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Table 4. The top 10 down-regulated miRNAs in leishmaniasis patients compared to healthy control group.

miRNA ID logFC p Value Regulate Significant

hsa-miR-4482-5p −4.00131 0.002571 down yes
hsa-miR-411-5p −3.16776 0.001176 down yes

hsa-miR-487b-3p −2.57252 0.000307 down yes
hsa-miR-381-3p −2.47089 0.005327 down yes
hsa-miR-654-3p −2.29163 0.000147 down yes

hsa-miR-2355-3p −2.24553 0.00178 down yes
hsa-miR-382-5p −2.24167 0.001283 down yes
hsa-miR-494-3p −2.21251 0.000269 down yes

hsa-miR-1-3p −2.18407 0.000411 down yes
hsa-miR-146a-5p −2.1812 1.68 × 10−9 down yes

3.2. Functional and Pathway Enrichment Analyses

Briefly, GO analysis describes the host genes’ function and relationships between
these. The enrichment results with regard to biological processes (BP) showed that nuclear
envelope reassembly, G2/M transition of the mitotic cell cycle and microtubule cytoskele-
ton organization are involved in mitosis and other processes (Figure 3A). As for cellular
components (CC), the host genes were enriched in chromosomes, the centromeric region,
the chromosomal region and the transferase complex, as well as others (Figure 3B). Ad-
ditionally, MF analysis showed that the host genes were enriched in histone binding,
nucleoside-triphosphatase regulator activity and protein serine/threonine kinase activity,
and others (Figure 3C). Furthermore, KEGG pathway enrichment analysis was enriched in
some biological pathways, including ubiquitin-mediated proteolysis, endocytosis, MAPK
signaling pathway, renal cell carcinoma, autophagy and the ErbB signaling pathway, and
others (Figure 3D).

1 
 

 Figure 3. GO analysis and KEGG Pathway analysis. The target genes significantly enrich molecular
function (MF), biological process (BP) and cellular component (CC) as shown in (A–C). The target
genes significantly enrich signal pathways (D).
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3.3. PPI Network Module Analysis of Host Genes

A total of 142 nodes and 185 edges were found in down-regulated host genes with a
PPI score ≥ 0.9 and experiments ≥ 0.6 (Figure 4A). In addition, 197 nodes and 254 edges
were found in down-regulated host genes with a PPI score ≥ 0.9 and experiments ≥ 0.6
(Figure 4B). In total, the top five hub genes were calculated as hub genes using the plugin
CytoHubba: BRCA1, CREBBP, EP300, PIK3R1, and CRK.

1 
 

 

Figure 4. PPI network analysis of host genes. (A) The host genes of up-regulated circRNAs from
the protein–protein interaction network. (B) The host genes of down-regulated circRNAs from the
protein–protein interaction network.

3.4. circRNA–miRNA–mRNA Network

The ceRNA network was built to research the relationship among circRNAs, miRNAs
and mRNAs. In total, 208 circRNAs, 52 miRNAs, 713 mRNAs, and 2034 edges had
differentially expressed profiles, as shown in Figure 5.

1 
 

 

Figure 5. The circRNAs–miRNA–mRNA competing endogenous RNA network. Overall regulatory
networks of circRNAs, miRNAs and mRNAs containing high-score interactions. Red triangles
indicate up-regulated circRNAs, pink triangles indicate the down-regulated circRNAs, green circles
represent miRNAs, blue rectangles indicate the mRNAs and a link between the nodes indicates the
target relationship.
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4. Discussion

There is no published study on the function and molecular mechanisms of circRNAs
in leishmaniasis. This is the first study to explore the different expressions of the circRNAs
profile of leishmaniasis. In this study, a total of 4664 significant differentially expressed cir-
cRNAs were identified, which were compared with those in healthy persons through high-
throughput sequencing, of which 1931 were up-regulated and 2733 were down-regulated.
In recent years, many studies found that circRNAs have several special characteristics,
including variety, structural stability, sequence conservation and specific expression that
may play an important role in a variety of diseases [27], and participate in important
biological processes, such as: neurogenesis [28], neuronal differentiation [29], and immune
response [30,31]. Moreover, as a proto-oncogene or tumor-suppressor gene, circRNA is
closely related to the occurrence of various tumors [32]. CircNUP210L (has_circ_0014359)
influences on the miR-153/PI3K pathway to facilitate glioma cell proliferation [33]. As
for lung cancer, Zhu et al. discovered specifically expressed circRNAs, 39 of which were
up-regulated, and 20 were down-regulated [34]. They also found that has_circ_0013958 was
up-regulated in the adenocarcinoma tissue and plasma of patients through further research;
when knock down has_circ_0013958 is present, the proliferation and invasion ability of
lung adenocarcinoma cells is promoted, and apoptosis is inhibited. However, circZFR plays
the role of an oncogene by promoting the expression of CUL4B (cullin-4B) by sponging
miR-101-3p [35]. In addition, Lai et al. found that has_circ_0047905, has_circ_0138960 and
has_circRNA7690-15 are up-regulated in stomach cancer. The proliferation and invasion
of gastric cancer cells are inhibited when knocking down the three circRNAs [36]. Fur-
thermore, overexpressed circPSMC3 can inhibit the growth and proliferation of gastric
cancer cells by targeting miR-654-3p and miR-296-5p, which affect the p21and PTEN sig-
naling pathways [37]. Previous research found that the down-regulation of circTFF1 can
inhibit the occurrence of breast cancer by sponging miR-326 and increasing the expression
level of TFF1 [38]. Another study found that highly expressed circGFRA1 has a very
important relationship with the prognosis of triple-negative breast cancer [39]. Qin et al.
found that the expression of has_circ_0001649 is associated with tumor size and tumor
emboli occurrence in hepatocellular carcinoma, which also suggests that has_circ_0001649
may serve as a potential new biomarker for hepatocellular carcinoma and play an impor-
tant role in the occurrence and metastasis of hepatocellular carcinoma [40]. Furthermore,
circUSP25 (hsa_circ_0001178) can induce hepatocellular carcinoma progression by regu-
lating the miR-382/VEGFA axis [41]. However, circMALAT1 (hsa_circ_0002082) acts as a
proto-oncogene or tumor-suppressor gene, and circMALAT1 can inhibit the translation
of the tumor-suppressor gene PAX5 and also act as a sponge of miR-6887-3p, activate the
JAK/STAT3 signaling pathway and promote the self-renewal of cancer stem cells [42]. The
above research revealed that due to their characteristics, circRNAs can act as biomark-
ers in a variety of tumors. However, there is currently no research on the functions and
mechanisms of circRNAs in leishmaniasis.

Therefore, this study discovered the functions of the host genes of significant differ-
entially expressed circRNAs through GO and KEGG analyses. According to the results
of the GO enrichment analysis, the host genes may play an important role in the occur-
rence of leishmaniasis. The results of KEGG pathway analysis showed that the top five
significant signal pathways are enrich in ubiquitin-mediated proteolysis, endocytosis, the
MAPK signaling pathway, renal cell carcinoma, autophagy and the ErbB signaling pathway.
Among these five significant signaling pathways, three pathways have been shown to
be associated with leishmaniasis. Previous research found that the endocytic pathway
of Leishmania is achieved by clathrin, followed by the internalization of host hemoglobin
(Hb) via a high-affinity receptor (HbR) [43]. Kumar et al. discovered that the endocytic
pathway of Leishmania into host macrophages is through clathrin- and caveolin-mediated
endocytosis [44]. In addition, Leishmania generally affects the CD40/MAPK pathway, and
increases ERK1/2 and decreases IL-10 and IL-12 production [45]. Moreover, multiple
studies demonstrate that enhanced LC3 labeling in vitro and in vivo is evidence that all



Trop. Med. Infect. Dis. 2022, 7, 176 9 of 11

Leishmania can induce autophagy [46–48]. Taken together, KEGG pathway analysis reveals
the possible biological functions of these host genes of leishmaniasis.

In the present study, we also identify the five hub genes of those host genes of the PPI
network, including: BRCA1, CREBBP, EP300, PIK3R1, and CRK. According to published
literature reports, these 10 hub genes all play important roles in tumors or other diseases.
However, only EP300 has been studied in leishmaniasis. Pragya et al. found that when
Leishmania infected BMMFs, time-dependence is increased in EP300 binding to the Bcl2L12
promoter [49]. This suggests that the other four hub genes may also play important roles in
leishmaniasis infection, which needs to be further studied.

5. Conclusions

This study is the first report of circRNA in leishmaniasis, and may provide novel
insights and evidence for the diagnosis and treatment of leishmaniasis. However, these
findings are preliminary, we will conduct further research on the corresponding circRNAs.

There are also several limitations in our study, the number of high-throughput se-
quencing samples in this study was relatively small and only met the requirements for
publication. Moreover, the differentially expressed outer circular RNAs we screened require
further validation in vivo and in vitro.
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