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Abstract: P. falciparum Kelch 13 (Pfk13) is an essential protein that contains BTB and Kelch-repeat
propeller domains (KRPD), which was predicted to bind substrate during ubiquitin-dependent deg-
radation pathway. However, the function of Pfk13 and the structural alterations associated with
artemisinin resistance mutations remain unknown. Herein, we screened two proteins, namely
Pfk13-F4461 and Pfk13-C580Y, which are closely associated with artemisinin, for structural predic-
tion analysis. The 389 amino acids from 1011 nt to 2178 nt of KRPD were cloned into pFastBac™1.
The recombinant plasmids were heterologously expressed in Spodoptera frugiperda 9 cells (SF9) and
a~44 kDa protein band was yielded by SDS-PAGE and Western Blot. A total of five structure models
were generated and predicted by AlphaFold for each protein. The models predicted that Pfk13-
F4461 would be located in the central protein cavity, proximal to mutations in cysteine residues
primarily in (8 strands. Unlike Pfk13-F446I, the Pfk13-C580Y is located on the small channel that
runs through the center of the K13 protein. Interestingly, the hydrogen bond between C580 and
C533 in the wide type (WT) was not detected, suggesting that the hydrogen bond may be lost during
the mutation. Besides, the Pfk13-F446I and Pfk13-C580Y mutation were found to add 11 and 9 hy-
drogen bonds variations that may lead to conformational change of the protein structure compared
to WT, respectively. Future work should pay more attention to the binding characteristics of those
mutations related with KPRD pockets and their binding substrates, which will further clarify the
structure and function of Pfk13 and its mutant.

Keywords: Plasmodium falciparum; Kelch 13 protein; F4461; C580Y; baculovirus; eukaryotic
expression

1. Introduction

Malaria is one of the most severe public health issues worldwide. Among all five
Plasmodium species that infect humans, Plasmodium falciparum has been the deadliest par-
asite [1]. Currently, malaria burden has greatly declined due to the implementations of
artemisinin (ART)-based combination therapies (ACTs), recommended as the first line
drug by the World Health Organization (WHO) in endemic countries [2]. However, treat-
ment failure has been seen in some regions due to the emergence and spread of artemis-
inin resistance against P. falciparum at the Thai-Cambodia border in the Greater Mekong
subregion (GMS), which imperils the global effort to reduce the burden of malaria [3,4].
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ART resistance (ART-R) is defined as in vivo delayed parasite clearance following treat-
ment with an artesunate monotherapy or with an ACT, and in vitro, an increased survival
rate following exposure to a high dose of ART [5,6]. This is primarily conferred by the P.
falciparum Kelch 13 (Pfk13) locus, identified as a genetic marker for ART-R by sequencing
of ART-pressured parasite strains in vitro and ART-sensitive or -resistant Cambodian iso-
lates [7]. The Pfk13 protein is a member of the Kelch-like superfamily and is dimeric as
per its crystal structure [8-10]. Till now, 10 of the Pfk13 single nonsynonymous mutations
have been validated in vitro and in vivo as associated with delayed clearance following
ACT treatment [11]. Among them, C580Y, assumed to be one of the strong molecular
markers for ART-R in P. falciparum, was predominant across GMS including Cambodia,
Myanmar, Thailand, Laos, and Vietnam [12,13]; it was also reported in the Amazonia re-
gion and Africa [14,15]. Another ART-R-related Pfk13 mutation, F4461, was commonly ob-
served at the China-Myanmar border and in northern Myanmar [16,17]. Previous studies
investigated the increased survival rate of RSAo-sn by the re-transfected F4461 gene into
the P. falciparum 3D7 strain, which was significantly associated with day three parasitemia
in patients [18]. The transgenic experiment showed that parasite carrying the F446] muta-
tion displayed prolonged clearance in response to ART, while using C580Y as a positive
control mutant [13]. Therefore, identification of novel drug targets and scaffolds to cover
the eventual emergency of complete ACT failure has prompted global concern. Drug re-
purposing methodologies and structure-based conservation techniques that target invar-
iant parasite house-keeping proteins may lead to novel foci for drug development [19].
The structure of the Pfk13 protein has previously been analyzed for the distribution of
ART-R mutations and its dimerization interfaces, utilizing the publicly available three-
dimensional structure [20,21]. To date, two crystal structures of Pfk13 proteins are availa-
ble in RCSB Protein Data Bank (4YY8 and 4ZGC). The protein structures showed that they
are clustered in two specific regions—one is the surface-exposed residues implicated in
protein-protein interactions, and the other is the buried residues influencing the overall
Pfk13 structure [22]. In this study, we aim to provide a heterologous expression system
using the baculovirus expression vector system (BEVS) for Pfk13-F446I and Pfk13-C580Y,
into the Spodoptera frugiperda 9 cell (SF9), and to investigate and characterize the structural
modelling analysis of the two mutated proteins with the AlphaFold method, which may
provide some novel insights into the contributions of those two key sites with ART-R in
Pfk13.

2. Materials and Methods
2.1. Strains, Insect Cells and Materials

The DH10Bac strain, Spodoptera frugiperda 9 cells (SF9) and pFastBac™1 transfer plas-
mid were all purchased from Shanghai NovoPro Biotechnology Co., Ltd (Shanghai,
China). SF9 cells used in this study were grown at 28 °C in sterile shake flasks at a speed
of 140 revolutions per minute (rpm) in a shaking incubator.

2.2. Chemosynthesis, Construction and Verification of Recombinant Plasmids with Pfk13-WT-
Bac, Pfk13-F446I-Bac, and Pfk13-C580Y-Bac

The total 389 amino acids sequence from 1011 nt to 2178 nt of KRPD in Kelch 13
(PF3D7_1343700) related to the mutation of P. falciparum 3D7 were obtained from the PDB
website (http://www.rcsb.org/structure/4YY8; accessed on 10/09/2021). Then, the nucleo-
base sequence of WT, Pfk13-F446I (Phe to Iso, TTT change into ATT) and Pfk13-C580Y
(Cys to Tyr, TGT change into TAT) with the enzymatic sites of BamHI (GGATCC) and
EcoRI (GAATTC), respectively, underwent chemosynthesis by Shanghai NovoPro Bio-
technology Co., Ltd.. The above fragments were then ligated with the expression vector
pFastBac™1 to obtain Pfk13-WT-Bac, Ptk13-F446I-Bac and Pfk13-C580Y-Bac. The recom-
binant plasmid was sequenced to confirm the insert sequence; it was also confirmed by
double enzymatic assay with BsrGI and HindlIl. After that, the recombinant plasmid was
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transformed into DH10Bac competent cells and coated with tertiary antibiotics (50 pg/mL
kanamycin; 7 pug/mL gentamicin; 10 ug/mL tetracycline). Incubated plates with X-gal (fi-
nal concentration of 1 mM) and isopropyl-p-D-thiogalactopyranoside (IPTG) (final con-
centration of 0.1 mM) were incubated overnight at 37 °C. The white colonies were selected
and inoculated into 5 mL tertiary antibiotics (50 pg/mL kanamycin; 7 pg/mL gentamicin;
10 pg/mL tetracycline) LB medium and cultured overnight at 37 °C at 220 rpm. A small
number of plasmids were extracted and verified by enzymatic digestion using PCR.

2.3. Transfection and Collection of SF9 Cell with Pfk13-WT, Pfk13-F446I and Pfk13-C580Y

A total of 2 mL of SF9 cells with a density of 0.5 x 105/mL were inoculated into a six-
well plate and adherent growth at 27 °C. The plasmids Pfk13-WT, Pfk13-F446I and Pfk13-
C580Y were fully reacted with the transfection reagent, and then gently added to SF9 cells.
The cells were incubated at 27 °C until they showed signs of virus infection. The remaining
culture was centrifuged and transferred to a sterile 2.0 mL EP tube, stored at 4 °C and
protected from light.

2.4. In Vitro Purification of Recombinant Protein of Pfk13-WT, Pfk13-F446I and Pfk13-C580Y

To obtain the purified protein, a total of 30 mL of SF9 cells with Pfk13-WT, Pfk13-
F4461 and Pfk13-C580Y at a density of 2.0 x 10¢/mL were incubated into a 250 mL Erlen-
meyer flask and cultured at 27 °C and at 120 rpm for 4 days. After addition of IPTG at 0.2
mM, the broth was induced at 16 °C for 20-24 h. Cells were harvested by centrifuge at
3996x g for 10 min. The cells were resuspended in PBS (pH 7.4 with 1 mM PMSF), quickly
frozen in liquid nitrogen, and stored at =80 °C. After thawing, NP-40 (0.6%), the protease
inhibitor, and DNase I were added, pulverized by ultrasonic sound waves at 4 °C (5s on/7
s off, 5 min, 100 W), and centrifuged at 63,936x g at 10 °C for 30 min. Then the precipitation
of recombinant protein was collected and used for assay. The recombinant proteins with
His-tag were purified with Ni-NTA agarose (Qiagen, Germantown, MD, USA). After the
cells were lysed, the supernatant was loaded at a rate of 1-1.5 mL/min and was allowed
to load onto a Bio-Rad 10-DG desalting column (GE Healthcare, Marlborough, MA, USA),
which was pre-equilibrated with 50 mM HEPES buffer (pH 7.5) and with 5% (v/v) glycerol.
The protein elution (50 mM HEPES, 500 mM NaCl, 5% Glycerol, pH 7.5) was adopted
with gradient elution (from 5 to 250 mM Imidazole) and was eluted at 250 mM Imidazole;
then 1 mM TCEP was added to the eluted sample. The eluted sample was dialyzed into
buffer (50 mM HEPES, 500 mM NaCl, 5% Glycerol, pH 7.5). The final protein was dialyzed
into buffer (10 mM HEPES, 500 mM NaCl, 5% Glycerol, pH 7.5) and then aliquoted.

2.5. Western Blot

The recombinant protein expression was verified by western blot (WB) assay. Briefly,
the extracted proteins were denatured by boiling with SDS-PAGE buffer, separated by
12% SDS-PAGE, and transferred to polyvinylidene difluoride membranes (Millipore, Bur-
lington, MA, USA). The blots were blocked with a buffer containing 5% skimmed milk for
1 h at 25 °C, and incubated in the same buffer with rabbit anti-His antibodies (1:1000 di-
lution in blocking buffer, Merck, Darmstadt, Germany) overnight at 4 °C. After washing,
the precipitation, supernatant, and elution (each for 20 uL) of recombinant protein was
performed by incubation with appropriate secondary antibodies (goat anti-rabbit IgG
conjugated to HRP at a dilution of 1:20,000, Merck, Darmstadt, Germany) for 1 h at room
temperature. The blots were washed, and a signal was developed using the SuperSignal
West Pico or Femto Chemiluminescent kit (Termo Fisher Scientifc, Waltham, MA, USA),
and recorded on the BioRad ChemiDoc MP imaging system.
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2.6. Protein Concentration Determination

Recombinant Pfk13-WT, Pfk13-F446l and Pfk13-C580Y proteins contain no trypto-
phan residue, and UV at A2s was not ideal for protein determination. Protein concentra-
tion was determined by Bradford assay using bovine serum albumin (BSA) as a standard.
The BSA assay kit (Sigma-Aldrich, Taufkirchen, Germany) was used according to manu-
facturer’s instructions. The purity of each protein was determined by BandScan Version
5.0.

2.7. Sequence Analysis

Protein  comparison was carried out by protein BLAST tool
(http://www.ncbinlm.nih.gov/blast/). Multiple amino acid sequence alignment was per-
formed by Cobalt Constraint-based Multiple Alignment Tool
(http://www.ncbi.nlm.nih.gov/tools/cobalt/cobalt.cgi?link_loc=BlastHomeLink; accessed
on 12/05/21.

2.8. AlphaFold Modelling Analysis

The modelling of recombinant protein of Pfk13-WT, Ptk13-F446I and Pfk13-C580Y
structure was conducted by AlphaFold (https://deepmind.com/research/open-source; ac-
cessed on 24/09/21). The structure prediction was performed by the standard AlphaFold
pipeline. For further analysis, structures with the best prediction quality were selected
and named the best-lowest model according to a predicted local distance difference test
(pLDDT). Preparation of molecular graphics images and minimal distance measurements
between atoms of pfK13-F446I and pfK13-C580Y were carried out in PyMol version 2.3.0
(Schrodinger, New York, NY, USA).

2.9. Code Awvailability

Source code for the AlphaFold model, trained weights, and inference script are avail-
able under an open-source license at https://github.com/deepmind/alphafold; accessed on
18/15/2021.

3. Results
3.1. Constuction of Recombinant Pfk13-WT, Pfk13-F446I and Pfk13-C580Y

The recombinant Pfk13-WT-Bac, Pfk13-F446I-Bac, and Pfk13-C580Y-Bac were con-
structed by using the 389 amino acids sequence from 1011 nt to 2178 nt of KRPD in pfK13.
PCR assay indicated that the presence of a 4032 bp band and 1970 bp band by double
enzymatic sites with BsrGI and Hindlll for Pfk13-WT-Bac (Figure 1A), Pfk13-F446I-Bac
(Figure 1B), and Pfk13-C580Y-Bac (Figure 1C).

A B C
1 2 M 1 2 M 1 2 M

Figure 1. PCR assay of recombinant Bacmid DNA. (A) Pfk13-WT recombinant Bacmid DNA, (B)
Pfk13-F4461 recombinant Bacmid DNA, (C) Ptk13-C580Y recombinant Bacmid DNA. M: DL5000
Marker; 1: the recombinant plasmid, 2: the recombinant plasmid digested with BsrGI-HindlIII.
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3.2. Expression of Pfk13-WT, Pfk13-F4461 and Pfk13-C580Y in SF9 Cell

After transfected into SF9 cell, SDS-PAGE assay showed that Pfk13-WT (Figure 2A),
Pfk13-F446l (Figure 2C) and Pfk13-C580Y (Figure 2E) proteins have been expressed in the
SF9 virus system. The target bands of Pfk13-WT, Pfk13-F446I and Pfk13-C580Y were ob-
tained with the purity of 91.2%, 94.5% and 82.4% in the supernatant, respectively. The
target purified proteins of Pfk13-WT, Pfk13-F446l and Pfk13-C580Y were obtained and
verified as ~44 kDa after dialysis. In addition, WB confirmed the presence of recombinant
proteins of Pfk13-WT (Figure 2B), Pfk13-F446] (Figure 2D) and Pfk13-C580Y (Figure 2F).

B Cc D
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43 45
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26 25
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Figure 2. SDS-PAGE and WB assay of recombinant protein. (A,B) Pfk13-WT recombinant protein,
(C,D) Pfk13-F446I recombinant protein, (E,F) Pfk13-C580Y recombinant protein. M: protein marker;
1: precipitation; 2: supernatant; 3: flow through; 4: wash; 5: elution. The red arrow indicates the
expected protein location.

3.3. Structural Modelling of Pfk13-F4461 and Pfk13-C580Y

To evaluate the structural characteristics of Pfk13-F446I and Pfk13-C580Y, we have
conducted structural modelling using the AlphaFold method. From the best-lowest
model (the pLDDT ranged from 85.436 to 92.654 for Pfk13-F446I, and from 82.115 to 93.748
for Pfk13-C580Y), a total of five structure models were generated each for Pfk13-F446I and
Ptk13-C580Y, respectively. The structure of Ptk13 suggests a redox function owing to the
presence of seven cysteine residues in the (3-propeller domain. All five models showed
that Pfk13-F446I are in the central protein cavity, proximal to mutations in cysteine resi-
dues primarily in (3 strands (Figure 3A-E). Unlike Pfk13-F446], the Pfk13-C580Y are lo-
cated on the small channel that runs through the center of K13 protein (Figure 4A-E). The
amino acid replacements, structural variations of Pfk13-F446I (Table S1) and Pfk13-C580Y
(Table S2) compared with the 3D model of Pfk13 from the Research Collaboratory for
Structural Bioinformatics Protein Data Bank (RCSB PDB; ID: 4YY8) were analyzed, and
the F4461 and C580Y mutations added 11 and 9 hydrogen bonds variation when compared
to WT, respectively. Interestingly, the hydrogen bond between C580 and C533 in the WT
of PDB 4YY8 was not detected in our model, which suggests that the hydrogen bond may
have been lost during the mutation (Table 1).



Pathogens 2022, 11, 1271 6 of 12

Figure 3. F446I protein structure modelling by AlphaFold. The structure prediction was performed
by the standard AlphaFold pipeline and generates 5 structure models from the best-lowest model.
The orthogonal views were listed in (A-E). The red arrow indicates the mutation at 446 site (change
from Phe to Iso).

Figure 4. C580Y protein structure modelling by AlphaFold. The structure prediction was performed
by the standard AlphaFold pipeline, and generated 5 structure models from the best-lowest model.
The orthogonal views were listed in (A—E). The red arrow indicates the mutation at 580 site (change
from Cys to Tyr).
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Table 1. The elements variation, conformational location, and spatial distribution of the C533 posi-
tion of pfK13 between the WT model (PDB 4YY8) and C580Y model by AlaphFold in this study.

Model Type Elements X Y z
WT (PDB 4yy8) N -17.97 -26.264 18.84
WT (PDB 4yy8) C -18.141 -24.822 18.834
WT (PDB 4yy8) C -19.235 -24.407 17.863
WT (PDB 4yy8) O -19.36 -24.961 16.775

WT (PDB 4yy8) ! H -0.39 -3.488 -1.942
Model C580Y1 N -0.003 -4.254 -1.409
Model C580Y1 C -0.698 -4.612 -0.171
Model C580Y1 C -2.213 —-4.631 -0.346
Model C580Y1 O -2.805 -3.605 -0.643
Model C580Y2 N -1.574 5.829 -8.52
Model C580Y2 C -2.887 5914 -7.874
Model C580Y2 C -2.776 6.238 -6.389
Model C580Y2 (@) -2.229 5.443 -5.637
Model C580Y3 N 4.815 ~7.399 -0.246
Model C580Y3 C 3.858 -8.028 0.66
Model C580Y3 C 245 ~7.528 0.367
Model C580Y3 (@) 22 -6.335 0.442
Model C580Y4 N -2.534 5.28 -2.05
Model C580Y4 C -3.805 5.291 -1.329
Model C580Y4 C -3.581 4.962 0.139
Model C580Y4 O -3.097 3.886 0.458
Model C580Y5 N 5.558 -3.18 3.363
Model C580Y5 C 4.469 -3.103 4.333
Model C580Y5 C 3.169 -3.571 3.697
Model C580Y5 O 2.703 -2.969 2.743

! The hydrogen in bold was missed in the C580Y model in this study.

4. Discussion

The resistance of P. falciparum to ACTs is one of the major challenges facing malaria
elimination worldwide, including China, where malaria had been eliminated in 2021
[23,24]. The ART-R of P. falciparum isolates have been found in five countries in the GMS,
and genes with single nucleotide polymorphisms (SNPs) related to artemisinin resistance
have been found in P. falciparum cases in Africa [17,25,26]. Since the first discovery linking
Ptk13 to ART-R reported in 2014, little published literature has reported on the recombi-
nant expression of Pfk13 protein using eukaryotic expression systems, except for the E.
coli expression system [27]. In the study, we report for the first time the expression of
Pfk13-F446l and Pfk13-C580Y proteins using BEVS and their structure modelling evalua-
tion by the AlphaFold method. BEVS is a highly efficient eukaryotic expression system
with high expression efficiency, similarity between expression, and natural products, etc.
At present, it has been used in malaria transmission-blocking vaccines such as P. falcipa-
rum gametocyte surface protein pfs48/45 [28], and the mosquito midgut gene [29,30].

Previous bioinformatics studies have indicated that the Pfk13 protein is highly ho-
mologous to the human Kelch-like ECH-associated protein-1 (KEAP1). Therefore, it is
proposed that K13 and KEAP1 proteins have similar functions through the regulation of
the transcription factor NFE2-related factor 2 (nuclear factor-erythroid 2-related factor 2,
Nrf2) ubiquitination process, which is the main regulator of oxidative stress [31]. The
Pfk13 protein is a 726 amino-acid member of the Kelch-like (KLHL) superfamily with a C-
terminal six-blade (3-propeller domain, a Plasmodium-specific N-terminal domain, and a
BTB/POZ domain [3,20]. Comparative structural analyses of the BTB domain of Pfk13
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clusters with the BTBs of Potassium (K+) Channel Tetramerization Domain (KCTD) pro-
tein family exhibited the highest similarity to KCTD17 [32]. The KRP domain of Pfk13
showed a conserved and solvent-exposed shallow pocket that is like other KRP domains
containing proteins [33].

The non-synonymous mutations, all present after positioning 440 amino acids in the
propeller domain of the Pfk13 gene, and we herein using 337-726 amino acids residues
for the heterologous expression and structural modelling. The recombinant plasmid was
confirmed by double enzymatic assay and was afterwards transinfected with an SF9 cell;
the SDS-PAGE showed that Pfk13-F4461 and Pfk13-C580Y were found in precipitants and
a little amount of the protein was visible in the elution, which might be explained why the
corresponding signal/band in the elution fraction observed by WB was not obtained, as
well as for the difference in purity. Given the reason that the expression profile would
interfere with protein activity, we adopted various standardizations for conditions, either
by lowering the induction temperature (low as 15 °C), altering the incubation time, or by
changing another vector (PCEP4) and cell host (Expi293 cell); but this did not significantly
alter the expression profile (data were not shown). We speculated that the conformational
change from amino acid in the 446 and 580 sites could be misleading, because the Pftk13-
F446I and Pfk13-C580Y mutations added 11 and 9 hydrogen bonds variations, respec-
tively, when compared to WT. In addition, the yield of those two proteins of Pfk13-F446I
and Pfk13-C580Y were 0.01 mg/mL, compared to the WT (0.02 mg/mL), also affected by
the conformational change of the amino acid replacement by those two mutations. Simi-
larly, the Gigaxonin mutation C464Y, located in the KREP central channel, such as C580Y
in Pfk13, was also associated with decreased Gigaxonin protein abundance [34]. There-
fore, we speculate that amino acid changes at the shallow pocket positions, which were
predicted to be involved in substrate binding, are too functionally damaging to provide a
long-term competitive advantage. However, a lot of Ptk13 ART-R alleles may alter other
properties of Pfk13, such as its abundance, through altered protein synthesis, folding, or
stability. Hence, more appropriate conditions for expression of those two proteins should
be sought.

AlphaFold was confirmed to have predicted the protein structure modelling with
high accuracy when compared to the experimental results in SARS-CoV-2, CYP102A1
(one of cytochrome P450 superfamily of enzymes), and KCTD proteins [35-38]. In this
study, the Pfk13-F446I and Pfk13-C580Y mutations could lead to destabilization of Kelch
domain structure by comparative structural analysis. Additionally, the C580 residue
forms a hydrogen-bond with G533 and is predicted to lead to a steric clash with G533 and
the loss of a hydrogen-bond, which was not found in Pfk13-WT, suggesting that molecular
dynamics simulations was needed for further study, and that as more data become avail-
able this model will improve.

The results of in vivo and in vitro experiments showed that F4461 and C580Y muta-
tions were associated with ART in the field, resulting in a delay in the clearance of ACTs
or an increase in the ring survival rate (RSA) [13,18] (Figure 5A). The BTB/POZ motif me-
diates protein binding and homo-dimerization [39] and is predicted to be involved in
binding to cullin 3, the largest family of E3 ubiquitin ligases [40,41], with the downstream
Pfk13 domain providing a substrate adaptor [42]. That is, the Pfk13 proteins partner with
an E3 ligase to bind and orient specific substrates ready for polyubiquitination by an E2
ubiquitin-conjugating enzyme, which in turn leads to their degradation by the ubiquitin-
proteasome system (Figure 5B).
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Figure 5. Mutations and structural representation of Pfk13 and its putative function as substrate
adaptor. (A) Mutations in the Pfk13 protein involved in artemisinin resistance by WHO. The vali-
dated mutations F4461 and C580Y were marked in the Kelch 1 and Kelch 3 propeller domains. (B)
Putative function of pfK13. The 3 domains were annotated in web-based database: P. falciparum
specific domain (SD), BTB and Kelch-repeat propeller domain (KRPD). The BTB domain is expected
to bind a scaffold Cullin protein, subsequently with E3 ubiquitin ligases, while the KRPD likely
binds to the substrate molecule(s) further ubiquitinated and possibly degraded by the ubiquitin-
proteasome system. As shown for structural representation, Pfk13 was recognized as a monomer.

Overall, this study provided Pfk13-F446I and Pfk13-C580Y heterologous expression
through a BEVS expression system in a SF9 cell. We also adopted a novel modelling frame-
work with AlaphFold to make predictions as to the effects of resistance mutations by
Pfk13-F4461 and Pfk13-C580Y on the ability of ACTs.

5. Conclusions

In conclusion, this work first provided the two mutations, Pfk13-F4461 and Pfk13-
C580Y, which were strongly correlated and heterologous with ART resistance, success-
fully expressed in the SF9 cell through the BEVS system. We also confirmed that the hy-
drogen bond disappeared between C580 and C533 in the WT, suggesting that the hydro-
gen bond may have been lost during the mutation. Moreover, the Pfk13-F4461 and Pfk13-
C580Y mutation added 11 and 9 hydrogen bonds variation that may lead to conforma-
tional change of the protein structure. Future work should pay more attention to the bind-
ing characteristics of those mutations related to the KRPD pocket and their binding sub-
strates, which will further clarify the structure function of Pfk13.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/pathogens11111271/s1, Table S1: The amino acid replace-
ments, structural variations of Pfk13-F446] comparing with 3D model of Pfk13 from the Research
Collaboratory for Structural Bioinformatics Protein Data Bank (RCSB PDB; ID: 4YY8). Table S2: The
amino acid replacements, structural variations of Pfk13-C580Y comparing with 3D model of Pfk13
from the Research Collaboratory for Structural Bioinformatics Protein Data Bank (RCSB PDB; ID:
4YY8).
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