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Abstract: Backgrounds: Advanced schistosomiasis is the late stage of schistosomiasis, seriously jeop-
ardizing the quality of life or lifetime of infected people. This study aimed to develop a nomogram
for predicting mortality of patients with advanced schistosomiasis japonica, taking Dongzhi County
of China as a case study. Method: Data of patients with advanced schistosomiasis japonica were
collected from Dongzhi Schistosomiasis Hospital from January 2019 to July 2022. Data of patients
were randomly divided into a training set and validation set with a ratio of 7:3. Candidate variables,
including survival outcomes, demographics, clinical features, laboratory examinations, and ultra-
sound examinations, were analyzed and selected by LASSO logistic regression for the nomogram. The
performance of the nomogram was assessed by concordance index (C-index), sensitivity, specificity,
positive predictive value (PPV) and negative predictive value (NPV). The calibration of the nomogram
was evaluated by the calibration plots, while clinical benefit was evaluated by decision curve and clin-
ical impact curve analysis. Results: A total of 628 patients were included in the final analysis. Atrophy
of the right liver, creatinine, ascites level III, N-terminal procollagen III peptide, and high-density
lipoprotein were selected as parameters for the nomogram model. The C-index, sensitivity, speci-
ficity, PPV, and NPV of the nomogram were 0.97 (95% [CI]: [0.95–0.99]), 0.78 (95% [CI]: [0.64–0.87]),
0.97 (95% [CI]: [0.94–0.98]), 0.78 (95% [CI]: [0.64–0.87]), 0.97 (95% [CI]: [0.94–0.98]) in the train-
ing set; and 0.98 (95% [CI]: [0.94–0.99]), 0.86 (95% [CI]: [0.64–0.96]), 0.97 (95% [CI]: [0.93–0.99]),
0.79 (95% [CI]: [0.57–0.92]), 0.98 (95% [CI]: [0.94–0.99]) in the validation set, respectively. The cali-
bration curves showed that the model fitted well between the prediction and actual observation in
both the training set and validation set. The decision and the clinical impact curves showed that the
nomogram had good clinical use for discriminating patients with high risk of death. Conclusions: A
nomogram was developed to predict prognosis of advanced schistosomiasis. It could guide clinical
staff or policy makers to formulate intervention strategies or efficiently allocate resources against
advanced schistosomiasis.

Keywords: advanced schistosomiasis; prognosis; LASSO logistic regression; nomogram

1. Introduction

Human schistosomiasis is a water-borne infectious disease caused by blood flukes of
the genus Schistosoma. The disease occurs worldwide in 78 countries and regions in Asia,
South America, the Middle East, and Africa. Globally, over 780 million people are at risk
of infection, and 250 million have been infected with Schistosoma spp., of which 90% are
concentrated in sub-Saharan Africa [1–3]. The estimated global burden of schistosomiasis
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is 3.31 million disability-adjusted life years (DALYs) [4]. There are three main species
of schistosomes infecting human beings: Schistosoma japonicum, Schistosoma mansoni, and
Schistosoma haematobium [2]. The former two species cause intestinal schistosomiasis and
impair the liver, spleen, and/or intestinal tissues. The symptoms present as nonspecific
intermittent abdominal pain, diarrhea, rectal bleeding [5], periportal fibrosis [6], portal
hypertension, ascites, and hematemesis [7]. S. haematobium causes urogenital schistoso-
miasis, leading to pathological effects such as hematuria, chronic fibrosis of the urinary
tract, hydroureter, hydronephrosis [8], and genital tract damage [9]. Among the three major
human schistosomiasis, schistosomiasis japonica often results in more severely pathological
lesions than the other two schistosomiasis due to the more significant ova production of
adult S. japonicum [10].

China used to be an endemic country, carrying the heaviest disease burden of schis-
tosomiasis japonica [11]. To provide guidance for clinical staff to treat patients efficiently,
schistosomiasis japonica was categorized as acute, chronic, and advanced schistosomiasis
based on history of patients exposed to infested water with cercaria of schistosomes, re-
sults of laboratory examination, and clinical symptoms [12,13]. Advanced schistosomiasis
japonica is the extreme form of schistosomiasis japonica with high mortality before Prazi-
quantel was available. It is often associated with severe growth retardation, spontaneous
bacterial peritonitis, refractory ascites, frequent bleeding of the upper gastrointestinal tract,
hepatic failure, etc. [14]. As the morbidity and prevalence of schistosomiasis has decreased
significantly after 70 years’ efforts, the Chinese government has paid more attention to
advanced schistosomiasis due to the lack of an efficient therapeutic approach and poor
prognosis [15,16]. In 2021, there were 29,037 cases of advanced schistosomiasis in China,
and 1526 advanced cases died from this disease in that year [17]. Since early interven-
tion is associated with improved prognosis [18], identifying patients at high risk of death
will ensure that these patients receive appropriate treatment and long-term follow-up.
Therefore, it is essential to develop a clinical tool that can help clinics to identify patients
with advanced schistosomiasis of high mortality risk accurately and provide guidance for
management decisions to decrease the disease burden.

Accurate prognostic evaluation is the basis of prevention and treatment, in which
clinical prognostic factors must be clearly illustrated [19]. Survival analyses, such as the Cox
proportional hazards model (CPH), were used to find the impact factors of clinical prog-
nostic outcomes in clinical research, but it may be too simplistic for some complex clinical
events, such as progression to death. However, the development of machine learning has
enabled predictive models to be applied further in many medical kinds of research [20–23].
For example, the nomograms have made prognoses quickly understood and have helped
clinical decision making through rapid computation in visualized user interfaces [24]. They
have recently been widely applied for predicting prognosis in cancers [25], acute infectious
diseases [18,26], and chronic diseases [27,28]. Predictive models in limited studies were
constructed by univariate–multivariate analysis based on relatively few variables and small
sample size [19,29]. Given increasing values of multiple variables, a more comprehensive
and personalized prognostic model is necessary for advanced schistosomiasis. In this study,
we conducted a population-based study using clinical data combined with machine learn-
ing arithmetic to develop a nomogram for predicting prognosis of patients with advanced
schistosomiasis japonica.

2. Methods
2.1. Data Source and Study Population

Dongzhi County (Supplementary Figure S1), located in the south of Anhui Province of
China along the Yangtze River, is an endemic county of schistosomiasis japonica with both
ecotypes of hill and marshland settings. More than 800 patients with advanced schistoso-
miasis japonica are enrolled in the county, and about 35 patients die each year. According
to the Diagnostic Criteria for Schistosomiasis (WS261–2006) issued by China’s Ministry of
Health, the patients who met the following four criteria were confirmed as having advanced
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schistosomiasis: (1) they had ever lived in endemic areas of schistosomiasis japonica and
had a history of exposure to S. japonicum; (2) they presented clinical symptoms such as
ascites, splenomegaly, portal hypertension, and gastroesophageal variceal bleeding, or with
granulomatous lesion of the colon and rectum or severe growth retardation; (3) they were
examined as anti-S. japonicum antibody-positive; (4) they were pathologically positive, as
tested by stool examination or rectal biopsy.

Data reflecting demographic, clinical, laboratory, and ultrasound features of advanced
patients admitted to Dongzhi Schistosomiasis Hospital were collected from January 2019
to July 2022. Patient identity information is kept strictly confidential. Moreover, the
patients were granted the right to waive participation without adversely affecting their
rights and benefits.

2.2. Inclusion and Exclusion Criteria of Participants

The inclusion criteria of patients were as follows: (1) patients agreed to participate in
this study; (2) patients had completed information, including demographic and clinical
information; (3) patients were diagnosed correctly; (4) patients met the criteria of China’s
treatment and assistance programs on advanced schistosomiasis japonica.

The exclusion criteria of patients were as follows: (1) patients refused to participate
in this study; (2) patients had missing information, including a lack of population-based
demographic, clinical, laboratory, ultrasonic data, and survival outcome; (3) patients with
other diseases whose symptoms were as similar as advanced schistosomiasis, including
primary hepatocarcinoma, primary hypersplenism, primary ascites, and primary liver
fibrosis; (4) patients had not been included in China’s treatment and assistance programs
on advanced schistosomiasis japonica.

2.3. Candidate Variables for Prediction

There were 34 variables included: survival outcome (death or not), demographic
data (age, gender, occupation), clinical data (splenectomy, cholecystectomy, hypertension,
hypoalbuminemia, hypokalemia, gastrointestinal bleeding, coagulopathy, diabetes, hepatic
encephalopathy, anemia level, body mass index (BMI)), laboratory data (HBV infection, as-
partate aminotransferase/alanine aminotransferase ratio (AST/ALT), albumin (ALB), total
protein (TP), albumin/globulin ratio (A/G), creatinine (CREA), high-density lipoprotein
(HDL), CA-125 antigen (CA-125), hyaluronate (HA), laminin (LN), N-terminal procollagen
III peptide (PIIIPN-P), IV collagen (CIV), total bilirubin (TBIL), direct bilirubin (DBIL)),
and ultrasonic data (liver fibrosis level, atrophy of the right liver, gallbladder disease). The
patients were followed up to the study’s deadline, or the death occurred. Positive outcomes
in this study were death occurring during hospitalization and after discharge.

2.4. Establishment of Training Set and Validation Set

The patients were randomly divided into training and validation sets with a ratio of
7:3 to ensure the distribution of outcome events and factors without significant difference
between the two datasets. The training set was used to screen the predictors and construct
the model. The internal validation set was used to evaluate the model performance.

2.5. Model Derivation

We used SPSS version 25.0 (SPSS, Chicago, IL, USA) and R software version 5.0
(https://www.r-project.org, accessed on 2 July 2022) to conduct the statistical analysis.

Descriptive statistics were used to analyze the baseline information in model deriva-
tion and internal validation. Differences in categorical variables were assessed using the
chi-squared test. All p values were two-tailed, and p < 0.05 was considered statistically
significant. Penalized regression was used to select relevant features regarding the death
probability of patients by the “glmnet” package of R. Penalized regression is recommended
by the transparent reporting of a multivariable prediction model for individual prognosis
or diagnosis (TRIPOD) checklist for developing and validating risk and diagnostic mod-

https://www.r-project.org
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els [30]. Regularization is a technique that adds a penalty to the objective function. This
penalty controls the model’s complexity by shrinking the regression coefficients’ values.
If the shrinkage is exactly zero, it is then called the L1 norm or L1 penalty [31,32]. The
least absolute shrinkage and selection operator (LASSO) uses L1 penalties. The penalty
term (λ) is controlled by a regularization parameter (k), which was selected using a cross-
validation procedure [33]. In this study, k was chosen using threefold cross-validation [33].
We constructed a logistic regression model based on the candidate predictors screened by
the LASSO regression. We selected the final predictors based on the Akaike information
criterion using the backward selection approach. Meanwhile, the variance inflation fac-
tor (VIF) was assessed among the variables, and VIF > 4.0 was interpreted as indicating
multicollinearity. Variables with VIF > 4.0 were excluded from the final model analysis.

2.6. Assessment of Model Performance

Performance of the established model was evaluated in the following ways: (1) Sensi-
tivity, specificity, positive predictivity value (PPV), and negative predictivity value (NPV)
were calculated to evaluate the performance of the model. (2) Concordance index (C-index),
which was equal to the area under the receiver operating characteristic curve (ROC) in
binary logistic regression [24], was calculated by bootstrapping (1000 resamples) to evaluate
discriminative ability. The C-index varies from 0.5 to 1.0, where 0.5 represents random
chance, and 1.0 indicates a perfect fit. Typically, C-index and AUC values larger than
0.7 suggested a reasonable estimation [34]. (3) Calibration plots were used to evaluate
calibrating ability. Typically, the calibration curve was close to the ideal curve, suggesting
that the model fitted well. (4) Decision curve analysis (DCA) was used to evaluate the
nomogram’s clinical net benefits and utility. DCA is a method for evaluating the clinical
benefit of alternative models and was applied to nomograms by quantifying net benefits at
different threshold probabilities [34]. The curves of the treat-all-patients scheme (represent-
ing the highest clinical costs) and the treat-none scheme (representing no clinical benefit)
were plotted as two references [35,36].

3. Results
3.1. General Information of Patients

Of the 860 patients registered in the database, 762 met the inclusion criteria and
were included in the final analysis, with 440 assigned to the training set and 188 to the
internal validation set randomly (Figure 1). No significant difference was detected in
any variable between the training set and the internal validation set (p > 0.05) (Table 1).
There were 185 males and 255 females in the training set, with 196 of them ≤65 years old
and 244 patients > 65 years old. A total of 94 males and 94 females were divided to the
validation set, with 86 patients ≤ 65 years old and 102 > 65 years old.

Table 1. Characteristics of patients with advanced schistosomiasis in this study.

Variables Assigned
Variable Categories Training Set Validation Set p-Value

outcome # Y 0 = live 382 (87%) 164 (87%) 0.99
1 = death 58 (13%) 24 (13%)

age # X1 0 = younger than or equal to 65 196 (45%) 86 (46%) 0.85
1 = older than 65 244 (55%) 102 (54%)

gender # X2 0 = male 185 (42%) 94 (50%) 0.08
1 = female 255 (58%) 94 (50%)

cholecystectomy # X3 0 = no 374 (85%) 155 (82%) 0.49
1 = yes 66 (15%) 33 (18%)

splenectomy # X4 0 = no splenectomy 271 (62%) 101 (54%) 0.08
1 = splenectomy 169 (38%) 87 (46%)

hypertension # X5 0 = no 302 (69%) 136 (73%) 0.35
1 = yes 138 (31%) 51 (27%)
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Table 1. Cont.

Variables Assigned
Variable Categories Training Set Validation Set p-Value

hypoalbuminemia # X6 0 = no 335 (76%) 135 (72%) 0.30
1 = yes 105 (24%) 53 (28%)

hypokalemia # X7 0 = no 380 (86%) 165 (88%) 0.73
1 = yes 60 (14%) 23 (12%)

gastrointestinal bleeding # X8 0 = no 417 (95%) 176 (94%) 0.70
1 = yes 23 (5%) 12 (6%)

coagulopathy # X9 0 = no 321 (73%) 143 (76%) 0.48
1 = yes 119 (27%) 45 (24%)

liver fibrosis level # X10 0 = II level 383 (87%) 161 (86%) 0.73
1 = III level 57 (13%) 27 (14%)

ARL # X11 0 = no 377 (86%) 156 (83%) 0.46
1 = yes 63 (14%) 32 (17%)

gallbladder disease # X12 0 = no 300 (68%) 127 (68%) 0.95
1 = yes 140 (32%) 61 (32%)

diabetes # X13 0 = no 411 (93%) 173 (92%) 0.65
1 = yes 29 (7%) 15 (8%)

HBV infection # X14 0 = no 428 (97%) 183 (97%) 1 &

1 = yes 12 (3%) 5 (3%)
hepatic encephalopathy # X15 0 = no 436 (99%) 186 (99%) 1 &

1 = yes 4 (1%) 2 (1%)
other cancer # X16 0 = no 432 (98%) 184 (98%) 0.76

1 = yes 8 (2%) 4 (2%)
occupation # ref 0 = farmer 409 (93%) 176 (93%) 0.94

X17 1 = fisher 2 (1%) 1 (1%)
X18 1 = other 29 (6%) 11 (6%)

anemia level # ref 0 = normal 326 (74%) 145 (77%) 0.81
X19 1 = I level 71 (16%) 29 (15%)
X20 1 = II level 34 (8%) 12 (6%)
X21 1 = III level 9 (2%) 2 (1%)

ascites level # ref 0 = I level 362 (82%) 151 (80%) 0.65
X22 1 = II level 43 (10%) 23 (12%)
X23 1 = III level 35 (8%) 14 (8%)

AST/ALT # ref 0 = 1.0 to 1.2 63 (14%) 24 (13%) 0.21
X24 1 = less than 1.0 66 (15%) 39 (21%)
X25 2 = greater than or equal to 1.2 311 (71%) 125 (66%)

ALB # ref 0 = 36.0 to 55.0 g/L 246 (56%) 103 (55%) 0.97
X26 1 = less than 36.0 g/L 183 (42%) 80 (42%)
X27 2 = greater than or equal to 55.0 g/L 11 (2%) 5 (3%)

TP # ref 0 = 65.0 to 85.0 g/L 219 (50%) 79 (42%) 0.17
X28 1 = less than 65.0 g/L 190 (43%) 91 (48%)
X29 2 = greater than or equal to 85.0 g/L 31 (7%) 18 (10%)

A/G # ref 0 = 1.0 to 2.5 399 (91%) 175 (93%) 0.66
X30 1 = less than 1.0 36 (8%) 12 (6%)
X31 2 = greater than or equal to 2.5 5 (1%) 1 (1%)

CREA # ref 0 = 57.0 to 111.0 umol/L 346 (79%) 144 (77%) 0.70
X32 1 = less than 57.0 umol/L 35 (8%) 14 (7%)
X33 2 = greater than or equal to 111.0 umol/L 59 (13%) 30 (16%)

HDL # ref 0 = 0.9 to 2.0 mmol/L 400 (91%) 177 (94%) 0.39
X34 1 = less than 0.9 mmol/L 32 (7%) 8 (4%)
X35 2 = greater than or equal to 2.0 mmol/L 8 (2%) 3 (2%)

BMI # ref 0 = 18.5 to 23.9 263 (60%) 110 (58%) 0.75
X36 1 = less than 18.5 71 (16%) 26 (14%)
X37 2 = 23.9 to 27.9 86 (20%) 43 (23%)
X38 3 = greater than or equal to 27.9 20 (4%) 9 (5%)

CA125 # X39 0 = less than or equal to 35.0 KU/L 315 (72%) 130 (69%) 0.60
1 = greater than 35.0 KU/L 125 (28%) 58 (31%)
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Table 1. Cont.

Variables Assigned
Variable Categories Training Set Validation Set p-Value

HA # X40 0 = less than or equal to 106.0 ng/mL 209 (48%) 80 (43%) 0.29
1 = greater than 106.0 ng/mL 231 (52%) 108 (57%)

LN # X41 0 = less than or equal to 133.0 ng/mL 429 (97%) 185 (98%) 0.57
1 = greater than 133.0 ng/mL 11 (3%) 3 (2%)

PIIIPN-P # X42 0 = less than or equal to 17.0 ng/mL 350 (80%) 148 (79%) 0.90
1 = greater than 17.0 ng/mL 90 (20%) 40 (21%)

CIV # X43 0 = less than or equal to 98.0 ng/mL 306 (70%) 120 (64%) 0.19
1 = greater than 98.0 ng/mL 134 (30%) 68 (36%)

TBIL # X44 0 = less than or equal to 19 umol/L 310 (70%) 136 (72%) 0.70
1 = greater than 19.0 umol/L 130 (30%) 52 (28%)

DBIL # X45 0 = less than or equal to 6.8 umol/L 289 (66%) 127 (68%) 0.72
1 = greater than 6.8 umol/L 151 (34%) 61 (32%)

ARL, atrophy of the right liver; AST/ALT, the ratio of aspartate aminotransferase and alanine aminotransferase;
ALB, albumin; TP, total protein; A/G, the ratio of albumin and globulin; CREA, creatinine; HDL, high-density
lipoprotein; BMI, body mass index; CA125, CA-125 antigen; HA, hyaluronic acid; LN, laminin; PIIIPN-P, pro-
collagen III N-terminal peptide; CIV, IV collagen; TBIL, total bilirubin; DBIL, direct bilirubin. # Frequency and
proportion; chi-square test was used to compare differences between groups. & the value was close to 1.
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Figure 1. The flowchart illustrates this study’s procedure, including the study population selection,
data collection, and the basis of the training and internal validation sets.

3.2. Risk Factors Affecting Outcomes

After converting multiple categorical variables to dummy variables, 45 variables were
included in the LASSO regression analysis (Figure 2). The λ was selected by using a
threefold cross-validation (Figure 3). There were two λ outputted, with one (former line,
fifteen variables) representing the minimum binomial deviance and the other (latter line,
seven variables) representing the largest λ that was still within a standard error (SE) of
the minimum binomial deviance. The latter λ was selected since it resulted in a stricter
limitation to decrease the number of variables than the former λ. Seven variables, including
ARL, ascites level III, A/G, CREA, HDL, CA-125, and PIIIPN-P, were selected in the end
according to the regression analysis (Table 2).
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Table 2. The coefficients screened by the LASSO regression.

Variables Coefficient Variables Coefficient Variables Coefficient

(Intercept) −3.029813 X16 . X32 .
X1 . X17 . X33 1.2633524
X2 . X18 . X34 0.1707879
X3 . X19 . X35 .
X4 . X20 . X36 .
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Table 2. Cont.

Variables Coefficient Variables Coefficient Variables Coefficient

X5 . X21 . X37 .
X6 . X22 . X38 .
X7 . X23 0.778357 X39 0.2489765
X8 . X24 . X40 .
X9 . X25 . X41 .

X10 . X26 . X42 0.9806545
X11 0.913022 X27 . X43 .
X12 . X28 . X44 .
X13 . X29 . X45 .
X14 . X30 0.1122175
X15 . X31 .

“.”: coefficients were shrunk to zero by regularization. X11, ARL; X23, ascites level III; X30, A/G; X33, CREA; X34,
HDL; X39, CA-125; X42, PIIIPN-P.
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3.3. Fitted Model and Constructed Nomogram

We used the seven independent variables to construct a logistic model. According
to the results shown in Table 3, two independent variables (X30, X39) were excluded
for further analysis due to having p values greater than 0.05. Then, we fitted the model
using the five independent variables (Table 4), including ARL(X11), ascites level III (X23),
CREA (X33), HDL (X34), and PIIIPNP (X42). The nomogram for prognosis of advanced
schistosomiasis was constructed according to the five predictors screened. Figure 4 showed
an example of using the nomogram to predict the death probability of a given patient. The
total score was determined based on summing up the individual scores calculated using
the nomogram.
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Table 3. Model of all independent variables.

Estimate Std. Error Z Value p Value Exp
(Estimate)

Exp (Estimate)
95% CI

(Intercept) −5.119 0.580 −8.834 <0.001 *** 0.006 (0.002–0.016)
X11 1.063 0.538 1.976 0.048 * 2.894 (0.991–8.273)
X23 1.723 0.661 2.606 0.009 ** 5.599 (1.579–21.618)
X30 0.356 0.675 0.527 0.598 1.428 (0.382–5.509)
X33 2.057 0.516 3.986 <0.001 *** 7.825 (2.883–22.133)
X34 1.446 0.724 1.997 0.046 * 4.244 (1.048–18.350)
X39 0.922 0.654 1.409 0.159 2.514 (0.709–9.596)
X42 2.445 0.594 4.116 <0.001 *** 11.532 (3.761–39.682)

Significance codes: *** 0.001; ** 0.01; * 0.05. X11, ARL; X23, ascites level III; X30, A/G; X33, CREA; X34, HDL; X39,
CA-125; X42, PIIIPN-P.

Table 4. Model of five independent variables.

Estimate Std. Error Z Value p Value Exp
(Estimate)

Exp (Estimate)
95% CI

(Intercept) −4.930 0.534 −9.234 <0.001 *** 0.007 (0.002–0.018)
X11 1.191 0.530 2.248 0.025 * 3.290 (1.146–9.276)
X23 2.071 0.632 3.278 0.001 ** 7.936 (2.369–28.975)
X33 2.286 0.492 4.645 <0.001 *** 9.838 (3.802–26.572)
X34 1.598 0.666 2.401 0.016 * 4.942 (1.377–19.168)
X42 2.876 0.537 5.353 <0.001 *** 17.749 (6.527–55.271)

Significance codes: *** 0.001; ** 0.01; * 0.05. X11, ARL; X23, ascites level III; X33, CREA; X34, HDL; X42, PIIIPN-P.
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Figure 4. Nomogram for predicting the death probability of patients. The value of the top scale
line is found corresponding to each independent variable, and then they are summed up. The
value is projected onto the total score scale to present the corresponding death probability. PIIIPN-P,
procollagen III N-terminal peptide; HDL, high-density lipoprotein; CREA, creatinine; ascites III,
ascites level III; ARL, atrophy of the right liver.
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3.4. Assessment of Nomogram

The nomogram’s performance is shown in Figures 5 and 6. The result of the confusion
matrix is shown in Supplementary Table S1. The C-index, sensitivity, specificity, PPV,
and NPV of the nomogram were 0.97 (95% [CI]: [0.95–0.99]), 0.78 (95% [CI]: [0.64–0.87]),
0.97 (95% [CI]: [0.94–0.98]), 0.78 (95% [CI]: [0.64–0.87]), 0.97 (95% [CI]: [0.94–0.98]), re-
spectively, in the training set; and 0.98 (95% [CI]: [0.94–0.99]), 0.86 (95% [CI]: [0.64–0.96]),
0.97 (95% [CI]: [0.93–0.99]), 0.79 (95% [CI]: [0.57–0.92]), 0.98 (95% [CI]: [0.94–0.99]), re-
spectively, in the validation set, which showed an excellent ability to identify high-death-
probability cases of this model. Meanwhile, after the bootstrap test for two ROC curves
(p = 0.730), the model performance was not significantly different between the training and
validation sets. The calibration curves of internal validation approached the ideal line, and
the p values for the goodness of fit (GOF) test of training and validation sets were both
greater than 0.95, which showed good consistency between the actual observations and
predictive values calculated by the nomogram.

Trop. Med. Infect. Dis. 2022, 7, x FOR PEER REVIEW 11 of 19 
 

 

Figure 4. Nomogram for predicting the death probability of patients. The value of the top scale line 
is found corresponding to each independent variable, and then they are summed up. The value is 
projected onto the total score scale to present the corresponding death probability. PIIIPN-P, pro-
collagen III N-terminal peptide; HDL, high-density lipoprotein; CREA, creatinine; ascites III, ascites 
level III; ARL, atrophy of the right liver. 

3.4. Assessment of Nomogram 
The nomogram’s performance is shown in Figures 5 and 6. The result of the confusion 

matrix is shown in Supplementary Table S1. The C-index, sensitivity, specificity, PPV, and 
NPV of the nomogram were 0.97 (95% [CI]: [0.95–0.99]), 0.78 (95% [CI]: [0.64–0.87]), 0.97 
(95% [CI]: [0.94–0.98]), 0.78 (95% [CI]: [0.64–0.87]), 0.97 (95% [CI]: [0.94–0.98]), respec-
tively, in the training set; and 0.98 (95% [CI]: [0.94–0.99]), 0.86 (95% [CI]: [0.64–0.96]), 0.97 
(95% [CI]: [0.93–0.99]), 0.79 (95% [CI]: [0.57–0.92]), 0.98 (95% [CI]: [0.94–0.99]), respec-
tively, in the validation set, which showed an excellent ability to identify high-death-prob-
ability cases of this model. Meanwhile, after the bootstrap test for two ROC curves (p = 
0.730), the model performance was not significantly different between the training and 
validation sets. The calibration curves of internal validation approached the ideal line, and 
the p values for the goodness of fit (GOF) test of training and validation sets were both 
greater than 0.95, which showed good consistency between the actual observations and 
predictive values calculated by the nomogram. 

 
Figure 5. Plot for the ROC curves. Figure 5. Plot for the ROC curves.

3.5. Clinical Use

The decision curve (Figure 7) showed that predicting death probability by the nomo-
gram was more beneficial than the treat-none scheme or the treat-all-patients scheme. For
example, if the patient chose treatment if their probability of death was 20% (the personal
threshold probability of a patient is 20%), then the net benefit was 0.1. Physicians make
decisions by the nomogram of whether implementing treatment has more benefit than
the treat-none scheme or the treat-all-patients scheme. Furthermore, the clinical impact
curve (Figure 8) shows the number of patients at death predicted by the nomogram and
the actual number of patients at death under different threshold probabilities.
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Figure 6. Plot for the calibration curves. (A): training set; (B): validation set. The ideal (fully
fitted), bias-corrected (adjusted), and apparent (actual) curves were calculated by 1000 repetitions
of bootstrapping samples. The p values for the training and validation sets’ GOF test were 0.99
and 0.98, respectively.
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Figure 7. Plot for the clinical decision curve. The y-axis measures the net benefit. The blue line
indicates the nomogram’s prediction. The thin gray line represents all patients for whom death
would occur. The thick gray line represents no patients for whom death would occur. The net
benefit was calculated by subtracting the proportion of all patients who were false positives from the
proportion who were true positives, weighted by the relative harm of forgoing treatment compared
to the negative consequences of unnecessary treatment.
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4. Discussion

The Chinese government gives high priority to advanced schistosomiasis due to its
health and economic impact. Since 2005, the national schistosomiasis control program has
assisted advanced schistosomiasis patients by providing subsidies to advanced cases for
medical treatment [37]. According to Yang’s report, ascites and megalosplenia are the major
subtypes of advanced schistosomiasis in China [38]. In our study, all patients with advanced
schistosomiasis were diagnosed as a subtype of ascites and received medical assistance for
advanced schistosomiasis treatment before our study. However, about 35 advanced cases
die annually. Exploring the prognostic factors and predicting their prognosis could help
clinicians identify individuals with a high risk of unfavorable prognoses requiring specific
attention and interventions.

We use retrospective cross-sectional research and LASSO logistic regression to ex-
plore the relationship between the prognostic outcomes of advanced schistosomiasis with
population-based demographic, clinical, laboratory, and ultrasonic data. Prognostic factors
were selected and used to construct a nomogram to predict death probabilities, including
atrophy of the right liver, ascites level III, CREA, HDL, and PIIIPN-P. This model provides
a plausible tool for clinical staff to screen advanced schistosomiasis patients with a high
death probability, as well as a theoretical reference to plan treatment and decrease the
disease burden of schistosomiasis [37].

In our study, 15.13% of patients (95/628) presented atrophy of the right liver, with
63 patients in the training set and 32 in the validation set. Previous studies have shown that
advanced schistosomiasis cases with atrophy of the right liver typically featured a thickened
wall of the portal vein branch of the right hepatic lobe in varying degrees, narrow blood lu-
men, slowed blood flow velocity, and a blocked right portal vein and its branches, without
blood flow passing through [39,40]. Patients with right liver resection undergo persistent
thrombocytopenia [41,42] and protein synthesis disorders [43], which may result in other
complications, such as gastrointestinal bleeding and hypoalbuminemia (which is similar to
this study). We found that patients with atrophy of the right liver had higher risks of coag-
ulation disorders and hypoalbuminemia than the usual (p < 0.01). Liver disease, especially
cirrhosis, is characterized by reduced synthesis of procoagulant proteins [44], which may
lead to spontaneous bleeding [45] and varicose vein rupture (the most severe forms of bleed-
ing in liver cirrhosis [46]). Some patients with cirrhosis might occur coagulation imbalance
due to relevant anticoagulant protein deficiency and coagulation factor excess. The coagu-
lation imbalance in some patients with cirrhosis is due to relevant anticoagulant protein
deficiency and coagulation factor excess. Some patients are prone to hypercoagulation [45],
which may result in deep vein thrombosis (DVT) and even disseminated intravascular
coagulation (DIC). If the thrombosis falls off, pulmonary embolism may occur, which is fatal
to patients. Furthermore, hypoalbuminemia is associated with a hypercatabolic state [47]
and low synthetic ability, leading to excessive protein loss. Moreover, it also reflects that
these patients are malnutritional, and there are not sufficient nutrients to be used for protein
synthesis [48]. That is a vicious circle, and long-term hypoalbuminemia may aggravate the
degree of liver damage [49], increase the risk of acute infection, and thus decrease the lifes-
pan of patients. Therefore, we suppose that the atrophy of the right liver results from severe
liver disease, as the liver has lost most of its functions at this time. However, in previous
studies of advanced schistosomiasis, atrophy of the right liver did not receive adequate
attention. We need to conduct additional studies to explore the prognosis of advanced
schistosomiasis with atrophy of the right liver.

Ascites is the excessive fluid accumulation in the peritoneal cavity, which is also the
most common symptom of advanced hepatic disease. As the dominant complication of
liver-specific damage, the severity of ascites directly affects the overall prognosis. The
survival rate of cirrhosis with ascites reaches only 60% within one year, while in refractory
ascites cases, the six-monthly survival rate does not exceed 50% [50]. The presence of
severe ascites is one of the strongest predictors of an elevated disability level in advanced
schistosomiasis patients [14]. Consistent with these previous studies [51] of forecasting
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or predicting the prognosis of advanced schistosomiasis, severe ascites was also included
in the nomogram model as a prognostic factor in our study. Mechanisms involved in
ascites formation are portal hypertension, hypoalbuminemia, overproduction of fluid, or
lymphatic obstruction [2]. The most common causes are liver cirrhosis, cancers, or heart
failure [52]. It is a chronic wasting disease that will decrease the patients’ overall quality of
life [53]. As the disease deteriorates, it is easy to have bacterial peritonitis (which will result
in long-term fever and even severe infection) or acute heart failure. Furthermore, massive
ascites can produce abdominal discomfort, such as abdominal swelling, pain, anorexia, and
fatigue [54,55]. Moreover, massive ascites also can hinder mobility [56] and damage the
personal appearance of the patients, which will increase the patient’s boredom and decrease
their life quality [57]. Unfortunately, not all patients with advanced schistosomiasis are
diagnosed in time to receive effective treatment.

In addition, this study selected CREA, HDL, and PIIIPN-P as independent predictors
of mortality risk among various biochemical variables. An increasing serum creatinine
concentration indicated decreased glomerular filtration, which reflects that the kidney
may have been damaged [58]. It was easy for patients with long-term impaired renal
function to suffer water-sodium retention (induced acute heart failure), hypoalbuminemia
(led to refractory ascites), and hyperazotemia (led to hepatic encephalopathy) [59,60].
PIIIPN-P increased at the early and later stages of liver fibrosis, which is an indicator of
active liver fibrosis [46,61], and indicated the degree of liver fibrosis deterioration. HDL
was the smallest and densest of all lipoprotein classes [62], affecting cholesterol export
from macrophages. Furthermore, it plays a vital anti-inflammatory, antioxidant, and
antithrombotic role [63,64], enhancing endothelial repair, improving endothelial function,
and suppressing leukocyte production in bone marrow [65,66]. Patients with advanced
schistosomiasis with long-term, low-level HDL indicated that their metabolism disorder
was severe and the liver or kidney might have been damaged. Differing from previous
reports [67,68], hyaluronic acid (HA), an indicator reflecting the degree of liver fibrosis,
was not included in our model based on LASSO regression, which the difference in the
subtype of advanced schistosomiasis and cohort population might explain.

The prognosis of patients with advanced schistosomiasis is influenced by many factors.
Traditional prediction models, such as the COX proportional hazards model or simple
logistic model, usually present bad performance because these methods cannot cope well
with linear, nonlinear, and multicollinear relationships. In addition, overfitting should
be avoided to increase discriminative ability. In this study, we first introduce the LASSO
logistic model to predict the death probability of advanced schistosomiasis patients. The
advantages of this model are that it can process hundreds of factors for predicting patients’
prognosis to minimize multicollinearity and avoid overfitting among variables. From the
results, the nomogram developed in our study performed excellent discriminative ability
with a C-index higher than 0.97 both in the training set and validation set. The sensitivity
(0.78 and 0.86 in the training and validation sets) was lower than the specificity (0.97 in
the training and validation sets) and C-index. That could be because the ratio of positive
outcomes in the overall sample was low (0.13). It could result in the model not being
further trained and a limited ability to identify patients with a probability of death between
0.5 and 0.6. DCA proved that our nomogram predicted death probability with good clinical
benefit and utility. The nomogram developed in our study provides a plausible tool for
clinics to screen advanced schistosomiasis patients at high risk of death. It also provides a
theoretical reference for improving China’s treatment and assistance programs for patients
with advanced schistosomiasis japonica.

There are several limitations of this research. One limitation is that ascites is the
only subtype of advanced schistosomiasis in Dongzhi County, and whether the model
could be used for other subtypes is unknown. Another limitation is that the performance
of the developed nomogram was only assessed by internal validation. Further prospec-
tive studies expanded to other subtypes of advanced schistosomiasis, other regions, and
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a larger sample should be conducted further to validate and optimize the nomogram
that we developed.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/tropicalmed8010033/s1, Figure S1: Dongzhi County; Table S1: Results
of the confusion matrix.

Author Contributions: Z.H.: writing—first manuscript; L.L.: writing—tables, figures; Y.L. and T.L.:
data collection; J.X.: manuscript review and editing, project administration and supervision, funding
acquisition; S.G., X.X. and S.Z.: data collection and analysis; Z.Y. and H.Z.: clinical guidance. All
authors have read and agreed to the published version of the manuscript.

Funding: Supported by National Key Research and Development Program of China (No. 2021YFC2300800,
2021YFC2300804), National Science Foundation of China (Grant No. 82073619) and Major national R&D
projects (2018ZX10101–002-002).

Institutional Review Board Statement: The study was conducted according to the guidelines of the
Declaration of Helsinki and approved by the Ethics Committee of National Institute of Parasitic
Diseases of China (No. 2022004).

Informed Consent Statement: Informed consent was obtained from all subjects involved in this study.

Data Availability Statement: Data are not available due to ethical restrictions.

Acknowledgments: Thanks to Zhu Haishun and Wang Shuqin for their great help and support for
data collection.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Aula, O.P.; McManus, D.P.; Jones, M.K.; Gordon, C.A. Schistosomiasis with a Focus on Africa. Trop. Med. Infect. Dis. 2021, 6, 109.

[CrossRef] [PubMed]
2. Colley, D.G.; Bustinduy, A.L.; Secor, W.E.; King, C.H. Human schistosomiasis. Lancet 2014, 383, 2253–2264. [CrossRef] [PubMed]
3. Deol, A.K.; Fleming, F.M.; Calvo-Urbano, B.; Walker, M.; Bucumi, V.; Gnandou, I.; Tukahebwa, E.M.; Jemu, S.; Mwingira, U.J.;

Alkohlani, A.; et al. Schistosomiasis—Assessing Progress toward the 2020 and 2025 Global Goals. N. Engl. J. Med. 2019, 381,
2519–2528. [CrossRef] [PubMed]

4. Pisarski, K. The Global Burden of Disease of Zoonotic Parasitic Diseases: Top 5 Contenders for Priority Consideration. Trop. Med.
Infect. Dis. 2019, 4, 44. [CrossRef] [PubMed]

5. Mohamed, A.R.; al Karawi, M.; Yasawy, M.I. Schistosomal colonic disease. Gut 1990, 31, 439–442. [CrossRef]
6. Cheever, A.W. A quantitative post-mortem study of Schistosomiasis mansoni in man. Am. J. Trop. Med. Hyg. 1968, 17,

38–64. [CrossRef]
7. Richter, J.; Correia Dacal, A.R.; Vergetti Siqueira, J.G.; Poggensee, G.; Mannsmann, U.; Deelder, A.; Feldmeier, H. Sonographic

prediction of variceal bleeding in patients with liver fibrosis due to Schistosoma mansoni. Trop. Med. Int. Health 1998, 3,
728–735. [CrossRef]

8. Khalaf, I.; Shokeir, A.; Shalaby, M. Urologic complications of genitourinary schistosomiasis. World J. Urol. 2012, 30,
31–38. [CrossRef]

9. Kjetland, E.F.; Leutscher, P.D.; Ndhlovu, P.D. A review of female genital schistosomiasis. Trends Parasitol. 2012, 28,
58–65. [CrossRef]

10. Song, L.; Wu, X.; Zhang, B.; Liu, J.; Ning, A.; Wu, Z. A cross-sectional survey comparing a free treatment program for advanced
schistosomiasis japonica to a general assistance program. Parasitol. Res. 2017, 116, 2901–2909. [CrossRef]

11. Hong, Z.; Li, L.; Zhang, L.; Wang, Q.; Xu, J.; Li, S.; Zhou, X.N. Elimination of Schistosomiasis Japonica in China: From the One
Health Perspective. China CDC Wkly 2022, 4, 130–134. [CrossRef]

12. Zhang, J.F.; Xu, J.; Bergquist, R.; Yu, L.L.; Yan, X.L.; Zhu, H.Q.; Wen, L.Y. Development and Application of Diagnos-
tics in the National Schistosomiasis Control Programme in The People’s Republic of China. Adv. Parasitol. 2016, 92,
409–434. [CrossRef] [PubMed]

13. Deng, W.C.; Yang, Z.; Xie, H.Q.; Li, Y.L.; Liu, J.X.; Ding, G.J.; Zhu, Y.H.; Jing, Q.S.; Kong, G.Q.; Lin, D.D.; et al. Diagnosis and
treatment of schistosomiasis japonica-concensuses among ex- perts in Hunan, Hubei and Jiangxi provinces. Zhongguo Xue Xi
Chong Bing Fang Zhi Za Zhi 2015, 27, 451–456. [PubMed]

14. Jia, T.W.; Utzinger, J.; Deng, Y.; Yang, K.; Li, Y.Y.; Zhu, J.H.; King, C.H.; Zhou, X.N. Quantifying quality of life and disability of
patients with advanced schistosomiasis japonica. PLoS Negl. Trop. Dis. 2011, 5, e966. [CrossRef] [PubMed]

15. Wu, L.L.; Hu, H.H.; Zhang, X.; Zhou, X.N.; Jia, T.W.; Wang, C.; Hong, Z.; Xu, J. Cost-effectiveness analysis of the integrated control
strategy for schistosomiasis japonica in a lake region of China: A case study. Infect. Dis. Poverty 2021, 10, 79. [CrossRef] [PubMed]

https://www.mdpi.com/article/10.3390/tropicalmed8010033/s1
https://www.mdpi.com/article/10.3390/tropicalmed8010033/s1
http://doi.org/10.3390/tropicalmed6030109
http://www.ncbi.nlm.nih.gov/pubmed/34206495
http://doi.org/10.1016/S0140-6736(13)61949-2
http://www.ncbi.nlm.nih.gov/pubmed/24698483
http://doi.org/10.1056/NEJMoa1812165
http://www.ncbi.nlm.nih.gov/pubmed/31881138
http://doi.org/10.3390/tropicalmed4010044
http://www.ncbi.nlm.nih.gov/pubmed/30832380
http://doi.org/10.1136/gut.31.4.439
http://doi.org/10.4269/ajtmh.1968.17.38
http://doi.org/10.1046/j.1365-3156.1998.00285.x
http://doi.org/10.1007/s00345-011-0751-7
http://doi.org/10.1016/j.pt.2011.10.008
http://doi.org/10.1007/s00436-017-5596-6
http://doi.org/10.46234/ccdcw2022.024
http://doi.org/10.1016/bs.apar.2016.02.008
http://www.ncbi.nlm.nih.gov/pubmed/27137454
http://www.ncbi.nlm.nih.gov/pubmed/26930926
http://doi.org/10.1371/journal.pntd.0000966
http://www.ncbi.nlm.nih.gov/pubmed/21358814
http://doi.org/10.1186/s40249-021-00863-y
http://www.ncbi.nlm.nih.gov/pubmed/34049589


Trop. Med. Infect. Dis. 2023, 8, 33 16 of 17

16. Hu, F.; Xie, S.Y.; Yuan, M.; Li, Y.F.; Li, Z.J.; Gao, Z.L.; Lan, W.M.; Liu, Y.M.; Xu, J.; Lin, D.D. The Dynamics of Hepatic Fibrosis
Related to Schistosomiasis and Its Risk Factors in a Cohort of China. Pathogens 2021, 10, 1532. [CrossRef] [PubMed]

17. Zhang, L.J.; Xu, Z.M.; Yang, F.; He, J.Y.; Dang, H.; Li, Y.L.; Cao, C.L.; Xu, J.; Li, S.Z.; Zhou, X.N. Progress of schistosomiasis control
in People’s Republic of China in 2021. Zhongguo Xue Xi Chong Bing Fang Zhi Za Zhi 2022, 34, 329–336. [CrossRef]

18. Liang, W.; Yao, J.; Chen, A.; Lv, Q.; Zanin, M.; Liu, J.; Wong, S.; Li, Y.; Lu, J.; Liang, H.; et al. Early triage of critically ill COVID-19
patients using deep learning. Nat. Commun. 2020, 11, 3543. [CrossRef]

19. Li, G.; Lian, L.; Huang, S.; Miao, J.; Cao, H.; Zuo, C.; Liu, X.; Zhu, Z. Nomograms to predict 2-year overall survival and advanced
schistosomiasis-specific survival after discharge: A competing risk analysis. J. Transl. Med. 2020, 18, 187. [CrossRef]

20. LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [CrossRef]
21. He, C.; Zhang, Y.; Cai, Z.; Lin, X. Competing risk analyses of overall survival and cancer-specific survival in patients with

combined hepatocellular cholangiocarcinoma after surgery. BMC Cancer 2019, 19, 178. [CrossRef] [PubMed]
22. Heo, J.; Yoon, J.G.; Park, H.; Kim, Y.D.; Nam, H.S.; Heo, J.H. Machine Learning-Based Model for Prediction of Outcomes in Acute

Stroke. Stroke 2019, 50, 1263–1265. [CrossRef] [PubMed]
23. Li, G.; Zhou, X.; Liu, J.; Chen, Y.; Zhang, H.; Chen, Y.; Liu, J.; Jiang, H.; Yang, J.; Nie, S. Comparison of three data min-

ing models for prediction of advanced schistosomiasis prognosis in the Hubei province. PLoS Negl. Trop. Dis. 2018, 12,
e0006262. [CrossRef] [PubMed]

24. Balachandran, V.P.; Gonen, M.; Smith, J.J.; DeMatteo, R.P. Nomograms in oncology: More than meets the eye. Lancet Oncol. 2015,
16, e173–e180. [CrossRef]

25. Zhou, H.; Zhang, Y.; Qiu, Z.; Chen, G.; Hong, S.; Chen, X.; Zhang, Z.; Huang, Y.; Zhang, L. Nomogram to Predict Cause-Specific
Mortality in Patients With Surgically Resected Stage I Non-Small-Cell Lung Cancer: A Competing Risk Analysis. Clin Lung
Cancer 2018, 19, e195–e203. [CrossRef]

26. Liu, L.; Xie, J.; Wu, W.; Chen, H.; Li, S.; He, H.; Yu, Y.; Hu, M.; Li, J.; Zheng, R.; et al. A simple nomogram for predicting failure
of non-invasive respiratory strategies in adults with COVID-19: A retrospective multicentre study. Lancet Digit Health 2021, 3,
e166–e174. [CrossRef]

27. Wu, Y.; Hu, H.; Cai, J.; Chen, R.; Zuo, X.; Cheng, H.; Yan, D. A prediction nomogram for the 3-year risk of incident diabetes
among Chinese adults. Sci. Rep. 2020, 10, 21716. [CrossRef]

28. Wang, Y.; Zhang, Y.; Wang, K.; Su, Y.; Zhuge, J.; Li, W.; Wang, S.; Yao, H. Nomogram Model for Screening the Risk of Type II
Diabetes in Western Xinjiang, China. Diabetes Metab. Syndr. Obes. 2021, 14, 3541–3553. [CrossRef]

29. Li, G.; Huang, S.; Lian, L.; Song, X.; Sun, W.; Miao, J.; Li, B.; Yuan, Y.; Wu, S.; Liu, X.; et al. Derivation and external validation of a model
to predict 2-year mortality risk of patients with advanced schistosomiasis after discharge. EBioMedicine 2019, 47, 309–318. [CrossRef]

30. Collins, G.S.; Reitsma, J.B.; Altman, D.G.; Moons, K.G. Transparent reporting of a multivariable prediction model for individual
prognosis or diagnosis (TRIPOD): The TRIPOD statement. BMJ 2015, 350, g7594. [CrossRef]

31. Garcia-Carretero, R.; Vigil-Medina, L.; Barquero-Perez, O.; Mora-Jimenez, I.; Soguero-Ruiz, C.; Goya-Esteban, R.; Ramos-Lopez, J.
Logistic LASSO and Elastic Net to Characterize Vitamin D Deficiency in a Hypertensive Obese Population. Metab. Syndr. Relat.
Disord. 2020, 18, 79–85. [CrossRef] [PubMed]

32. Mullah, M.A.S.; Hanley, J.A.; Benedetti, A. LASSO type penalized spline regression for binary data. BMC Med. Res. Methodol.
2021, 21, 83. [CrossRef] [PubMed]

33. Qu, Y.; Pan, C.; Guo, S.; Wu, H. Dietary Intake and Asthma in Preschoolers: A Logistic Lasso Regression Analysis. Front Pediatr.
2022, 10, 870529. [CrossRef]

34. Wu, J.; Zhang, H.; Li, L.; Hu, M.; Chen, L.; Xu, B.; Song, Q. A nomogram for predicting overall survival in patients with low-grade
endometrial stromal sarcoma: A population-based analysis. Cancer Commun. 2020, 40, 301–312. [CrossRef]

35. Fitzgerald, M.; Saville, B.R.; Lewis, R.J. Decision curve analysis. JAMA 2015, 313, 409–410. [CrossRef] [PubMed]
36. Vickers, A.J.; Elkin, E.B. Decision curve analysis: A novel method for evaluating prediction models. Med. Decis. Making 2006, 26,

565–574. [CrossRef]
37. Song, L.; Wu, X.; Ren, J.; Gao, Z.; Xu, Y.; Xie, H.; Li, D.; Gong, Z.; Hu, F.; Liu, H.; et al. Assessment of the effect of treatment and

assistance program on advanced patients with schistosomiasis japonica in China from 2009 to 2014. Parasitol. Res. 2016, 115,
4267–4273. [CrossRef] [PubMed]

38. Yang, F.; Xu, J.; Lü, S.; Cao, C.L.; Li, S.Z.; Zhang, L.J. Analysis on epidemiological characteristics of current advanced schistosomi-
asis cases in China based on the Epidemiological Dynamic Data Collection Platform (EDDC). Zhongguo Xue Xi Chong Bing Fang
Zhi Za Zhi 2021, 33, 234–239. [CrossRef] [PubMed]

39. Ding, Y.Y. Analysis of right hepatic lobe atrophy caused by advanced schistosomiasis by color Doppler ultrasound. Chin. J. Ctrl.
Endem. Dis. 2014, 29, 1.

40. Yang, K.H.; Ge, S.L.; Zhang, M.H.; Chen, H.; Wang, H.; Han, M.L.; Du, L.F. Investigation of the causes for right lobe atrophy in
schistosomisis japonica patients using ultrasound. Chin. J. Med. Imaging Technol. 2013, 29, 802–850. [CrossRef]

41. Adike, A.; Rakela, J.; Czaplicki, C.; Moss, A.; Carey, E. Right hepatic lobe resection and thrombocytopenia. Ann. Hepatol. 2017, 16,
10–11. [CrossRef] [PubMed]

42. Trotter, J.F.; Gillespie, B.W.; Terrault, N.A.; Abecassis, M.M.; Merion, R.M.; Brown, R.S., Jr.; Olthoff, K.M.; Hayashi, P.H.; Berg, C.L.;
Fisher, R.A.; et al. Laboratory test results after living liver donation in the adult-to-adult living donor liver transplantation cohort
study. Liver Transpl. 2011, 17, 409–417. [CrossRef] [PubMed]

http://doi.org/10.3390/pathogens10121532
http://www.ncbi.nlm.nih.gov/pubmed/34959487
http://doi.org/10.16250/j.32.1374.2022132
http://doi.org/10.1038/s41467-020-17280-8
http://doi.org/10.1186/s12967-020-02353-5
http://doi.org/10.1038/nature14539
http://doi.org/10.1186/s12885-019-5398-6
http://www.ncbi.nlm.nih.gov/pubmed/30813928
http://doi.org/10.1161/STROKEAHA.118.024293
http://www.ncbi.nlm.nih.gov/pubmed/30890116
http://doi.org/10.1371/journal.pntd.0006262
http://www.ncbi.nlm.nih.gov/pubmed/29447165
http://doi.org/10.1016/S1470-2045(14)71116-7
http://doi.org/10.1016/j.cllc.2017.10.016
http://doi.org/10.1016/S2589-7500(20)30316-2
http://doi.org/10.1038/s41598-020-78716-1
http://doi.org/10.2147/DMSO.S313838
http://doi.org/10.1016/j.ebiom.2019.08.028
http://doi.org/10.1136/bmj.g7594
http://doi.org/10.1089/met.2019.0104
http://www.ncbi.nlm.nih.gov/pubmed/31928513
http://doi.org/10.1186/s12874-021-01234-9
http://www.ncbi.nlm.nih.gov/pubmed/33894761
http://doi.org/10.3389/fped.2022.870529
http://doi.org/10.1002/cac2.12067
http://doi.org/10.1001/jama.2015.37
http://www.ncbi.nlm.nih.gov/pubmed/25626037
http://doi.org/10.1177/0272989X06295361
http://doi.org/10.1007/s00436-016-5207-y
http://www.ncbi.nlm.nih.gov/pubmed/27461114
http://doi.org/10.16250/j.32.1374.2021113
http://www.ncbi.nlm.nih.gov/pubmed/34286523
http://doi.org/10.13929/j.1003-3289.2013.05.022
http://doi.org/10.5604/16652681.1226810
http://www.ncbi.nlm.nih.gov/pubmed/28051788
http://doi.org/10.1002/lt.22246
http://www.ncbi.nlm.nih.gov/pubmed/21445924


Trop. Med. Infect. Dis. 2023, 8, 33 17 of 17

43. Wang, H.Q.; Yang, J.; Yang, J.Y.; Wang, W.T.; Yan, L.N. Low immediate postoperative platelet count is associated with hepatic
insufficiency after hepatectomy. World J. Gastroenterol. 2014, 20, 11871–11877. [CrossRef]

44. Amitrano, L.; Guardascione, M.A.; Brancaccio, V.; Balzano, A. Coagulation disorders in liver disease. Semin Liver Dis. 2002, 22,
83–96. [CrossRef] [PubMed]

45. Northup, P.G.; Caldwell, S.H. Coagulation in liver disease: A guide for the clinician. Clin. Gastroenterol. Hepatol. 2013, 11,
1064–1074. [CrossRef] [PubMed]

46. Kar, R.; Kar, S.S.; Sarin, S.K. Hepatic coagulopathy-intricacies and challenges; a cross-sectional descriptive study of 110
patients from a superspecialty institute in North India with review of literature. Blood Coagul. Fibrinolysis 2013, 24,
175–180. [CrossRef] [PubMed]

47. Ali, A.M.; Kunugi, H. Hypoproteinemia predicts disease severity and mortality in COVID-19: A call for action. Diagn Pathol.
2021, 16, 31. [CrossRef]

48. Katalinic, L.; Premuzic, V.; Basic-Jukic, N.; Barisic, I.; Jelakovic, B. Hypoproteinemia as a factor in assessing malnutrition and
predicting survival on hemodialysis. J. Artif. Organs 2019, 22, 230–236. [CrossRef]

49. Sun, W.; Li, G.; Zhang, J.; Zhu, J.; Zhang, Z. The role of nutritional assessment for predicting radiotherapy-induced adverse events
in patients with gastric cancer. Br. J. Radiol. 2022, 95, 20201004. [CrossRef]

50. Garbuzenko, D.V.; Arefyev, N.O. Current approaches to the management of patients with cirrhotic ascites. World J. Gastroenterol.
2019, 25, 3738–3752. [CrossRef]

51. Jiang, H.; Deng, W.; Zhou, J.; Ren, G.; Cai, X.; Li, S.; Hu, B.; Li, C.; Shi, Y.; Zhang, N.; et al. Machine learning algorithms to predict
the 1 year unfavourable prognosis for advanced schistosomiasis. Int. J. Parasitol. 2021, 51, 959–965. [CrossRef] [PubMed]

52. Kikowicz, M.; Gozdowska, J.; Durlik, M. Massive Ascites of Unknown Origin: A Case Report. Transplant. Proc. 2020, 52,
2527–2529. [CrossRef] [PubMed]

53. Muhie, O.A. Causes and Clinical Profiles of Ascites at University of Gondar Hospital, Northwest Ethiopia: Institution-Based
Cross-Sectional Study. Can J. Gastroenterol. Hepatol. 2019, 2019, 5958032. [CrossRef] [PubMed]

54. Chung, M.; Kozuch, P. Treatment of malignant ascites. Curr. Treat. Options. Oncol. 2008, 9, 215–233. [CrossRef]
55. Zhao, R.; Lu, J.; Shi, Y.; Zhao, H.; Xu, K.; Sheng, J. Current management of refractory ascites in patients with cirrhosis. J. Int. Med.

Res. 2018, 46, 1138–1145. [CrossRef] [PubMed]
56. Li, G.F.; Teng, Z.; Tian, J.G.; Yu, X.; Yu, X.Q.; Sun, X.D. Quality of life and its influencing factors of advanced schistosomiasis

patients in Qingpu District, Shanghai. Zhongguo Xue Xi Chong Bing Fang Zhi Za Zhi 2014, 26, 303–307.
57. Zhou, R.H.; Yu, H.Q.; Liu, J.X.; Xiao, C.L.; Pan, J.; Lai, R.Y.; Li, L.L. Effect of rational emotive therapy on negative emotion

in advanced schistosomiasis patients with repeated hospitalization. Zhongguo Xue Xi Chong Bing Fang Zhi Za Zhi 2020, 32,
308–310. [CrossRef]

58. Ottka, C.; Vapalahti, K.; Määttä, A.M.; Huuskonen, N.; Sarpanen, S.; Jalkanen, L.; Lohi, H. High serum creatinine concentration is
associated with metabolic perturbations in dogs. J. Vet. Intern. Med. 2021, 35, 405–414. [CrossRef]

59. Conner, B.J. Treating Hypoalbuminemia. Vet. Clin. N. Am. Small Anim. Pract. 2017, 47, 451–459. [CrossRef]
60. Siew, E.D.; Matheny, M.E. Choice of Reference Serum Creatinine in Defining Acute Kidney Injury. Nephron 2015, 131,

107–112. [CrossRef]
61. Calès, P.; Oberti, F.; Michalak, S.; Hubert-Fouchard, I.; Rousselet, M.C.; Konaté, A.; Gallois, Y.; Ternisien, C.; Chevailler, A.; Lunel, F.

A novel panel of blood markers to assess the degree of liver fibrosis. Hepatology 2005, 42, 1373–1381. [CrossRef] [PubMed]
62. Zhang, G.M.; Bai, S.M.; Zhang, G.M.; Ma, X.B.; Goyal, H. A Novel Method for Estimating Low-Density Lipoprotein (LDL) Levels:

Total Cholesterol and Non-High-Density Lipoprotein (HDL) Can Be Used to Predict Abnormal LDL Level in an Apparently
Healthy Population. Med. Sci. Monit. 2018, 24, 1688–1692. [CrossRef] [PubMed]

63. Kosmas, C.E.; Christodoulidis, G.; Cheng, J.W.; Vittorio, T.J.; Lerakis, S. High-density lipoprotein functionality in coronary artery
disease. Am. J. Med. Sci. 2014, 347, 504–508. [CrossRef] [PubMed]

64. Bosch, N.; Frishman, W.H. Newer therapeutic strategies to alter high-density lipoprotein level and function. Cardiol. Rev. 2014, 22,
17–24. [CrossRef]

65. Rye, K.A. High density lipoprotein structure, function, and metabolism: A new Thematic Series. J. Lipid. Res. 2013, 54,
2031–2033. [CrossRef]

66. Kon, V.; Yang, H.C.; Smith, L.E.; Vickers, K.C.; Linton, M.F. High-Density Lipoproteins in Kidney Disease. Int. J. Mol. Sci.
2021, 22. [CrossRef]

67. Chen, S.D.; Fang, L.L.; Zhang, C.X.; Lian, M.J. Diagnostic Value of HA, LN, CIV and PIIINP in Patients With Liver Fibrosis and
Cirrhosis of Hepatitis B. China Health Stand. Manag. 2022, 12, 5–8. [CrossRef]

68. Hu, F.; Hu, A.Z.; Li, Y.X.; Tang, G.C.; Zhang, B.L.; Liu, H.Y.; Gao, Z.L.; Xu, J.; Ning, A. Study on the clinical usefulness of the
serum fibrosis index to diagnose hepatic fibrosis in patients with schistosomiasis. J. Pathog. Biol. 2014, 12, 1130–1133. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.3748/wjg.v20.i33.11871
http://doi.org/10.1055/s-2002-23205
http://www.ncbi.nlm.nih.gov/pubmed/11928081
http://doi.org/10.1016/j.cgh.2013.02.026
http://www.ncbi.nlm.nih.gov/pubmed/23506859
http://doi.org/10.1097/MBC.0b013e32835b2483
http://www.ncbi.nlm.nih.gov/pubmed/23358200
http://doi.org/10.1186/s13000-021-01092-5
http://doi.org/10.1007/s10047-019-01098-3
http://doi.org/10.1259/bjr.20201004
http://doi.org/10.3748/wjg.v25.i28.3738
http://doi.org/10.1016/j.ijpara.2021.03.004
http://www.ncbi.nlm.nih.gov/pubmed/33891933
http://doi.org/10.1016/j.transproceed.2020.01.094
http://www.ncbi.nlm.nih.gov/pubmed/32276839
http://doi.org/10.1155/2019/5958032
http://www.ncbi.nlm.nih.gov/pubmed/31360695
http://doi.org/10.1007/s11864-008-0068-y
http://doi.org/10.1177/0300060517735231
http://www.ncbi.nlm.nih.gov/pubmed/29210304
http://doi.org/10.16250/j.32.1374.2020098
http://doi.org/10.1111/jvim.16011
http://doi.org/10.1016/j.cvsm.2016.09.009
http://doi.org/10.1159/000439144
http://doi.org/10.1002/hep.20935
http://www.ncbi.nlm.nih.gov/pubmed/16317693
http://doi.org/10.12659/MSM.909226
http://www.ncbi.nlm.nih.gov/pubmed/29563489
http://doi.org/10.1097/MAJ.0000000000000231
http://www.ncbi.nlm.nih.gov/pubmed/24603157
http://doi.org/10.1097/CRD.0b013e31829cac29
http://doi.org/10.1194/jlr.E041350
http://doi.org/10.3390/ijms22158201
http://doi.org/10.3969/j.issn.1674-9316.2022.12.002
http://doi.org/10.13350/j.cjpb.141218

	Introduction 
	Methods 
	Data Source and Study Population 
	Inclusion and Exclusion Criteria of Participants 
	Candidate Variables for Prediction 
	Establishment of Training Set and Validation Set 
	Model Derivation 
	Assessment of Model Performance 

	Results 
	General Information of Patients 
	Risk Factors Affecting Outcomes 
	Fitted Model and Constructed Nomogram 
	Assessment of Nomogram 
	Clinical Use 

	Discussion 
	References

