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Abstract
Background  Giardia duodenalis (G. duodenalis) is a globally distributed zoonotic protozoan that parasitizes the small 
intestines of humans and various mammals, such as goats and sheep. The objective of this study was to establish a 
convenient, accurate, and specific method based on restriction fragment length polymorphism (RFLP) for genotyping 
assemblages A, B and E of G. duodenalis in goats. The β-giardin gene was amplified using primer pairs bgF1, bgR1, 
bgF2 and bgR2 by nested PCR. The PCR products were digested with the restriction enzymes Hinf I and Bgl I. The 
established PCR-RFLP method was used to detect and analyze the genetic subtypes of G. duodenalis in 130 fecal 
samples from goats and compared simultaneously with microscopic examination and nucleic acid sequencing for G. 
duodenalis.

Results  Genetic sequencing confirmed that the PCR-RFLP method accurately distinguished G. duodenalis 
assemblages A, B and E, as well as different combinations of mixed infections of these three assemblages. Among the 
130 samples tested by PCR-RFLP, a total of 26 samples (20.00%) tested positive for G. duodenalis, a higher sensitivity 
than microscopic examination at 13.85% (18/130). Sequence alignment analysis revealed that among the 26 PCR-
positive samples, two were identified as assemblage AI, while the remaining 24 were identified as assemblage E or 
E12.

Conclusions  This study established an accurate, efficient and rapid PCR-RFLP genotyping method using the bg 
sequence of G. duodenalis, enabling accurate identification and effective differentiation of goat-derived G. duodenalis 
assemblages without requiring sequencing.

Keywords  Giardia Duodenalis, Genotype, PCR-RFLP, Goat, Restriction enzymes

Establishment and preliminary application 
of PCR-RFLP genotyping method for Giardia 
duodenalis in goats
Xuanru Mu1†, Jianchao Guo2†, Hongcai Wang1, Yilong Li1, Kaijian Yuan1, Hui Xu1, Wenjing Zeng1, Qiaoyu Li1, 
Xingang Yu1*  and Yang Hong3,4*

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://orcid.org/0000-0002-2363-858X
http://orcid.org/0000-0002-7739-6344
http://crossmark.crossref.org/dialog/?doi=10.1186/s12917-024-04386-0&domain=pdf&date_stamp=2024-11-25


Page 2 of 9Mu et al. BMC Veterinary Research          (2024) 20:527 

Background
Giardia duodenalis (syn. G. lamblia, G. intestinalis) is 
an important and common zoonotic parasite that infects 
many mammals, including goats, cattle, cats, dogs and 
humans [1–3]. The life cycle of G. duodenalis is simple, 
consisting of two stages with the disease producing tro-
phozoites and infectious cysts [4]. The cysts can infect 
humans and various mammals through contaminated 
food and water, causing giardiasis, which is characterized 
primarily by symptoms such as abdominal pain, diarrhea, 
vomiting and malabsorption [5–7]. Since the 1970s, giar-
diasis has been prevalent or has occurred in outbreaks 
worldwide, and is listed by the World Health Organi-
zation as one of the neglected diseases that endanger 
human health [2], with more than 280  million cases of 
human giardiasis are estimated to occur worldwide each 
year [8]. G. duodenalis is described as a species complex 
consisting of eight distinct genetic assemblages A to H, 
identified through genetic analysis. Assemblages A and 
B are found in humans and various mammals, while 
assemblages C to H have more distinct host specificity. 
Assemblages C and D are specific to dogs, assemblage 
E is commonly found in goats, pigs and other artiodac-
tyls; assemblage F in cats; assemblage G in rodents and 
assemblage H in pinniped [9].

Direct microscopy is widely used for the clinical detec-
tion of G. duodenalis, but it is time-consuming, labor-
intensive and prone to missed detections in practical 
applications [10]. As it is difficult or unable to differen-
tiate different G. duodenalis assemblages based on mor-
phological characteristics alone, accurate identification 
of its genotypes requires molecular methodology [11]. 
Polymerase chain reaction–restriction fragment length 
polymorphism (PCR-RFLP) is a simple, fast and accurate 
molecular marker method. The fundamental principle of 
PCR-RFLP involves the digestion of PCR-amplified DNA 
fragments from target genes with specific restriction 
endonucleases. Pathogen genotypes are identified based 
on the electrophoretic patterns of the resulting digestion 
products, making further sequencing or sequence align-
ment analysis unnecessary. This significantly reduces 
detection time and eliminates dependence on expensive 
instrumentation [12]. Xu et al. [13] successfully estab-
lished a PCR-RFLP genotyping method for Balantioi-
des coli, that accurately distinguished genetic variants 
A and B of Balantioides coli. We previously developed a 
PCR-RFLP method for typing zoonotic (A, B) and host-
specific (C, D) assemblages of G. duodenalis from dogs, 
which effectively distinguished the common four assem-
blages A, B, C and D [14].

Goats are an economically efficient type of livestock 
that yield high-quality meat, cashmere, and milk [15, 16]. 
G. duodenalis is widely distributed among ruminant pop-
ulations, with infection rates in goats or sheep worldwide 

ranging from 2.9 to 42.2% [17]. The G. duodenalis strains 
infecting goats or sheep primarily belong to assemblage 
E, but they frequently occur as mixed infections involv-
ing assemblages A and E, A and B, A, B or E [16, 18, 19]. 
Goats are commonly raised in free-range systems, with 
their feces directly discharged into the surrounding envi-
ronment without further treatment. As significant and 
prevalent hosts of G. duodenalis, goats carry zoonotic 
assemblages A and B, which risk zoonotic transmission 
through contaminated water sources to humans and 
other mammal [20–22].

In the present study, the PCR-RFLP method was 
developed for the rapid detection and genotyping of 
goat-derived assemblages A, B and E, as well as several 
combinations of mixed infections involving these three 
assemblages, providing technical support for a molecular 
epidemiological survey of goat-derived G. duodenalis.

Methods
Source of samples
Genomic DNAs of assemblages A, B and E were provided 
by the Parasite Laboratory of Foshan University (Guang-
dong, China). In December 2022, a total of 150 fresh goat 
fecal samples were collected from three farms in Zhan-
jiang City, Guangdong Province, including 20 goats that 
were younger than three months and 130 goats aged four 
to 30 months. Each 10 g sample was individually packed 
in a clean, sealed bag and marked with the farm, goat 
age and date of collection. The samples were transported 
quickly to the laboratory while packed in ice, then stored 
at 4 ℃. The 130 fresh goat fecal samples were used to 
assess the accuracy and reliability of the PCR-RFLP geno-
typing method established in this study. Twenty fecal 
samples from juvenile goats that were confirmed negative 
by nested PCR [16], were used as controls for the sample 
testing.

Microscopic examination
All fecal samples were concentrated by flotation using 
33.2% zinc sulfate with a specific gravity of 1.3. The 
method was carried out as described in previous reports 
with some modifications [2, 23]. Briefly, two to four 
grams of feces were diluted with sterile water (about 
5 ~ 10 mL), passed through a 60-mesh copper sieve into 
a 50 mL centrifuge tube (Corning Science, Shanghai, 
China), and centrifuged at 200×g for 5 min. The superna-
tant was discarded and then zinc sulfate solution (about 
5 ~ 10 mL) was added along the rim of the tube, followed 
by thorough mixing. The supernatant was carefully trans-
ferred into new 15 mL centrifuge tube (Corning Science, 
Shanghai, China), and a cover slip was then carefully 
placed on top of the tube, contacting the crescent-shaped 
meniscus formed by the zinc sulfate solution. The tube 
was subsequently centrifuged at 500×g for 1 min with the 
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cover slip in place. Following centrifugation, the cover 
slip was gently removed and immediately examined 
under the microscope.

Fecal DNA extraction and PCR amplification of β-giardin
Approximately 200 to 300  mg of each sample was used 
to extract DNA with E.Z.N.A.® Stool DNA Kit (Omega, 
Norcross, GA, USA) [2, 16, 23], according to the instruc-
tions of the kit. The DNA samples were stored at − 20 ℃ 
before PCR analysis.

Two pairs of primers for the bg gene of G. duodenalis 
were designed in Table  1 using DNAMAN (v6.0) soft-
ware. All PCRs were performed in a total volume of 25 
µL, consisting of 8.5 µL ddH2O, 2 µL of each primer pair 
bgF1/bgR1 (bgF2/bgR2) (10 µM), 12.5 µL 2× Taq Master 
Mix (Dye Plus) (Vazyme, Nanjing, China), and 2 µL DNA 
sample. The thermocycler program was consisted of 94 
℃ for 5  min, followed by 35 cycles of denaturation at 
94 ℃ for 40 s, annealing at 60 ℃ for 30 s (second round 
at 58 ℃ for 30 s), extension at 72 ℃ for 60 s and a final 
extension at 72 ℃ for 10 min.

The secondary PCR was performed in a similar reac-
tion condition as the primary PCR, except for the 
replacement of the template with 2 µL primary amplicon. 
The positive PCR products exhibited an expected band 
of 516 bp length, visualized using a UV transilluminator 
(Dublin, CA, USA) after electrophoresis on a 1.2% aga-
rose gel.

Establishment of the PCR-RFLP method
The reference bg gene sequences MK610389 (assemblage 
E), MK610390 (assemblage E), KP687765 (assemblage 
A), KM926506 (assemblage A), EU626199 (assemblage 
B) and MT542772 (assemblage B) were analyzed using 
Primer premier 5.0 software (Premier Biosoft Intl., 
CA USA). Two restriction enzymes, Hinf I and Bgl I 
were then selected to digest the PCR products and the 
expected results are shown in Table  2. Digestion was 
performed in a 20 µL reaction volume containing 10 µL 
PCR product, 2 µL 10×M Buffer, 2 µL QuickCutTmHinf 
I (Takara, Beijing, China) and 6 µL ddH2O for 2  h at 
37℃, followed by the addition of 1 µL Bgl I and 2.1 µL 
10 × Bgl I Buffer (Takara, Beijing, China), and incubated 
for 3 h at 37℃. The digested PCR products were analyzed 
by 3% agarose gel electrophoresis stained with ethidium 
bromide.

At the same time, nucleic acid sequencing of G. duo-
denalis was performed, involving sequence analysis of 
PCR products from the bg, glutamate dehydrogenase 
(gdh) and triosephosphate isomerase (tpi) genes with 
multilocus genotyping (MLG). Three primer pairs (Table 
S1) were used following the methodology described in a 
previous study [16]. Positive PCR products of the bg, gdh, 
and tpi genes from G. duodenalis assemblages A, B and 
E, as well as several combinations of mixed infections 
involving these three assemblages, were sent to Sangon 
Biological Engineering Technology and Service Co., Ltd. 
(Songjiang, Shanghai, China) (Availability of data: The 
accession numbers PQ284089–PQ284142).

Clinical sample testing and phylogenetic analysis
A total of 130 black goat fecal samples were collected to 
further evaluate the accuracy and reliability of the PCR-
RFLP method established in this study. The β-giardin 
gene sequences from all positive PCR products were 
sent to Sangon Biological Engineering Technology and 
Service Co., Ltd. The obtained sequences (Availability 
of data: The accession numbers PQ284063–PQ284088) 
were compared with reference sequences retrieved from 
the GenBank database ​(​​​h​t​​t​p​s​​:​/​/​b​​l​a​​s​t​.​n​c​b​i​.​n​l​m​.​n​i​h​.​g​o​v​/​B​l​a​
s​t​.​c​g​i​​​​​, accessed on 1 July 2024). Phylogenetic analysis was 
performed using maximum likelihood (ML), with boot-
strap values calculated by analyzing 1000 replicates and 
other selected default parameters in MEGA 7.0 (http://
www.megasoftware.net/, accessed on 9 July 2024).

Results
PCR product of the β-giardin gene
The nested PCR amplification of the β-giardin gene from 
G. duodenalis yielded a DNA fragment approximately 
516  bp in size, consistent with the expected fragment 
length (Fig. 1).

Table 1  Primers for bg gene sequence of nested PCR
Primer Sequence Tm(℃) Predicted 

fragment 
size (bp)

bgF1 5′-​T​C​G​A​C​G​A​C​G​A​C​A​C​G​C​G​C​G​T​G​A​
A​G​A-3′

60 619

bgR1 5′-​G​A​G​A​C​G​A​C​G​T​C​C​T​C​G​A​G​A​G​T​G​
T​T​G-3′

bgF2 5′-​A​A​G​C​G​C​C​A​G​G​C​C​T​C​G​T​T​C​G​A​
G-3′

58 516

bgR2 5′-​G​A​T​C​T​T​G​T​C​C​T​C​T​G​C​C​T​C​C​T​T​G​
C​G-3′

Table 2  Expected results of restriction endonuclease digestion 
of Hinf I and Bgl I
Assemblage PCR 

amplicons 
(bp)

Cleav-
age site 
(number)

Predicted frag-
ment size (bp)

Assemblage A 516 1 193;323
Assemblage E 516 2 66*; 193; 257
Assemblage B 516 0 516
Assemblages A, B 516 1 193;323;516
Assemblages A, E 516 3 66*;193;257;323
Assemblages B, E 516 2 66*;193;257;516
Assemblages A, B, E 516 3 66*;193;257;323;516
Note: * Indicates that it may not be displayed in the gel

https://blast.ncbi.nlm.nih.gov/Blast.cgi
https://blast.ncbi.nlm.nih.gov/Blast.cgi
http://www.megasoftware.net/
http://www.megasoftware.net/
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Restriction enzyme analysis
The PCR products were digested with Hinf I and Bgl I and 
the resulting fragments were separated using gel elec-
trophoresis. Distinct restriction patterns were observed 
among isolates belonging to assemblages A, B, E, mixed 
types of A and B, A and E, B and E, and the combination 
of A, B and E (Fig. 2).

The PCR products derived from assemblage A isolates 
were cleaved into two fragments measuring 193  bp and 
323 bp in length. Those from assemblage B samples did 
not contain Hinf I and Bgl I restriction sites, resulting in a 
single fragment of 516 bp. Assemblages E isolates yielded 
three fragments of 66, 193 and 257 bp. Mixed type iso-
lates of assemblages A and B produced three fragments 

of 193, 323 and 516  bp. Mixed type isolates of assem-
blages A and E yielded four fragments of 66, 193, 257 
and 323 bp. Mixed type isolates of assemblages B and E 
produced four fragments of 66, 193, 257 and 516 bp and 
mixed type isolates of assemblages A, B and E resulted 
in five fragments of 66, 193, 257, 323 and 516 bp. These 
findings were consistent with the sequencing analysis, so 
the genotyping of goat-derived G. duodenalis could be 
rapidly distinguished using Hinf I and Bgl I restriction 
enzymes.

The sequencing results were compared with those 
obtained using the PCR-RFLP method established in 
this study (Table S2). The results indicated that the PCR-
RFLP method effectively differentiated G. duodenalis 

Fig. 2  Restriction enzyme digestion results of PCR products with Hinf I and Bgl I. M: DL-500 DNA Marker; 1–3: assemblage A; 4–6: assemblage B; 7–9: 
assemblage E; 10–12: mixed type of assemblage A, E; 13–15: mixed type of assemblage A, B; 16–18: mixed type of assemblage B, E; 19–21: mixed type of 
assemblage A, B, E; P: Positive control; N: Negative control

 

Fig. 1  PCR amplification of bg gene of G. duodenalis in partial goat-derived samples. M: DL-2000 DNA Marker; 1–9: Goat-derived samples; 10: Positive 
control; N: Negative control
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assemblages A, B, and E, along with several combinations 
of mixed infections involving these assemblages, consis-
tent with the results of genetic sequencing.

Comparison with microscopy and sequencing method
Both the PCR-RFLP method and microscopy were simul-
taneously used to test 130 fecal samples. The PCR-RFLP 
results revealed that 26 samples were positive for G. duo-
denalis, resulting in a positivity rate of 20.00%. In con-
trast, microscopy detected only 18 samples, resulting in 
a positivity rate of 13.85%. The PCR-RFLP method exhib-
ited a positive concordance rate of 100%, a negative con-
cordance rate of 92.85% and an overall concordance rate 
of 93.84% (Table 3).

Among the 26 PCR-RFLP positive samples, 24 were 
identified as assemblage E and 2 as assemblage A (Fig. 3). 
Notably, no cases of assemblage B or mixed infections 
were detected and the PCR-RFLP method’s accuracy 
aligned perfectly with the sequencing results.

Phylogenetic analysis
The PCR products of the bg gene from positive samples 
were sequenced, yielding a total of 26 G. duodenalis bg 
sequences. Of these, two bg sequences were identified as 

assemblage A, while the remaining 24 were classified as 
assemblage E or subtype E12 (Fig. 4). The 2 assemblage 
AI sequences shared 100% bg sequence homology with 
KP687765 from human samples in Spain.

In contrast, the remaining 24 sequences belonged 
to assemblage E or its subtypes. Among these, 22 
sequences of assemblage E showed 97 to 100% homol-
ogy with MK452880 from sheep in Greece, while the 
other two sequences E12 shared over 99% homology with 
KY432834 from dairy cattle in China (Fig. 4).

Discussion
In developing countries, giardiasis detection rates are 
higher than in developed nations due to factors like 
socioeconomic conditions, sanitation, and exposure 
to contaminated water or infected individuals [17, 24]. 
Ingesting as few as 10 viable cysts can cause G. duodena-
lis infection in humans [25]. Assemblages A and B infect 
both humans and mammals via contaminated food and 
water, while assemblage E mainly affects artiodactyls 
such as goats and sheep, though human infections have 
also been reported [9, 26, 27]. In China, the prevalence of 
giardiasis in sheep and goats is around 7%, ranging from 
0 to 28.93% across provinces [17]. Infections in goats and 
sheep are predominantly caused by assemblage E, but 
mixed infections involving assemblages A and E, A and B, 
or A, B, and E [3, 17, 18, 28–31]. Given that goat farming 
is often extensive with limited fecal disinfection, these 
assemblages pose zoonotic risks, underscoring the need 
for rapid molecular detection to monitor genetic diver-
sity and control strategies.

Common genetic typing methods for G. duodenalis 
include nested PCR-based multi-locus sequence analysis 

Table 3  Comparative analysis of PCR-RFLP and microscopy 
observation of clinical fecal samples
Method Microscopy 

observation
Total Coincidence rate (%)

Positive Negative
PCR-RFLP
Result

Positive 18 8 26 100
Negative 0 104 104 92.85
Total 18 112 130 93.84

Fig. 3  PCR-RFLP identification results of goat-derived G. duodenalis from positive samples. M: DL-500 DNA Marker; 1–26: Samples; P: Positive control; N: 
Negative control
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[14, 16], oligonucleotide microarray [32], and high-reso-
lution melting (HRM) [33]. Each technique has specific 
advantages and drawbacks: multi-locus sequence analy-
sis is accurate but time-consuming and expensive [14]; 
microarray is rapid but costly and requires extensive 
probe synthesis; HRM is fast and specific but requires 
specialized equipment. PCR-RFLP, on the other hand, 
is cost-effective, rapid, and user-friendly, requiring only 
basic equipment for gel electrophoresis of enzyme-
digested products [13, 14]. The small subunit ribosomal 
RNA (SSU-rRNA), glutamate dehydrogenase (gdh), trios-
ephosphate isomerase (tpi) and bg genes are among the 
most commonly used loci to identify multiple variants of 
G. duodenalis in different host species [34]. Among these, 
bg is a specific gene unique to G. duodenalis and using 
the bg gene for detection yielded highly sensitive results 
[16], so bg was selected as the target gene for method 
establishment in this study.

Sequence analysis of the bg gene using Snapgene and 
Premier 5.0 software revealed that assemblages A and E 
shared a common Bgl I restriction site at gene loci 187–
197. Assemblage E possesses a Hinf I restriction site at 

loci 450–455, whereas assemblage B does not have the 
Bgl I and Hinf I restriction sites. Comparative analysis 
of multiple previously published gene sequences identi-
fied positions 187–197 and 450–455 as highly conserved 
regions within the amplified sequences, indicating robust 
stability. Finally, Hinf I and Bgl I were used to digest the 
PCR products. The results shown that assemblage A 
contained two fragments of 193 and 323 bp; assemblage 
B had only one fragments of 516  bp; assemblage E had 
three fragments of 66, 193 and 257  bp; assemblages A 
and B had three fragments of 193, 323 and 516 bp; assem-
blages A and E shared four fragments of 66, 193, 257 and 
323 bp; assemblages B and E shared four fragments of 66, 
193, 257 and 516 bp; and assemblages A, B and E shared 
five fragments of 66, 193, 257, 323 and 516  bp (Fig.  2). 
The number and size of the bands can be easily distin-
guished in agarose gel electrophoresis, making it more 
economical and efficient than sequencing analysis.

Twenty-six out of 130 goat fecal samples tested posi-
tive for G. duodenalis using PCR-RFLP, yielding an over-
all prevalence of 20.00%, whereas microscopy detected 
only 18 positive samples, resulting in a positivity rate of 

Fig. 4  Phylogenetic tree of G. duodenalis in black goats based on bg gene sequences. The Tamura-Nei model method was used with bootstrap evaluation 
of 1000 replicates. All the genotypes identified in this study are marked by red solid triangles. Bootstrap values are shown when > 50%
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13.85%. The PCR-RFLP demonstrated higher detection 
sensitivity compared to microscopy, which is not only 
limited by its lower sensitivity but also time-consuming 
and labor-intensive. Furthermore, microscopic exami-
nation cannot accurately distinguish between different 
Giardia assemblages. This limitation is particularly pro-
nounced in diarrheal feces, where G. duodenalis typically 
exists as trophozoites, which are easily disintegrated by 
external environmental factors (such as high temperature 
and dryness), often leading to missed or misdiagnoses. 
Based on PCR-RFLP genotyping of the bg gene sequence, 
only two assemblages of G. duodenalis were identified. 
Two samples were identified as assemblage A and 24 
samples were identified as assemblage E. No assemblage 
B or mixed infections involving different assemblages 
were observed (Fig. 3). The phylogenetic analysis results 
indicated that two of these bg sequences were identi-
fied as assemblage AI, while the remaining 24 sequences 
belonged to assemblage E or E12. The results were con-
sistent with the PCR-RFLP genotyping results obtained 
in this study, confirming their accuracy and reliability. 
In the comparison of 130 clinical samples, neither PCR-
RFLP genotype nor PCR sequencing genotype methods 
detected mixed infections of G. duodenalis. This may be 
attributed to the actual prevalence of G. duodenalis com-
plexes in the goat population studied or to sample size 
limitations. The current set of 130 samples used only for 
comparative validation purposes might not encompass 
all potential infection scenarios, so the absence of mixed 
infections was not detected.

Given the considerable diversity of G. duodenalis 
assemblages (A, B, E, A and E, A and B, B and E or A, 
B, and E) in goats, the method developed in this study 
was primarily designed to enable the rapid and accurate 
differentiation of the three major G. duodenalis assem-
blages. It does not extend to the more refined differen-
tiation of sub-assemblages (e.g., AI, AII, BIII, BIV) or 
genotypes (e.g., E12). A significant concern is that includ-
ing additional genetic subtypes in the enzyme restriction 
analysis could lead to overlapping band sizes, making it 
difficult to distinguish these variants both accurately and 
quickly. This would compromise the primary advantage 
of the method—its accuracy and convenience. Addition-
ally, during the initial stages of experimental design, we 
noted that several existing studies have established PCR-
RFLP genotyping methods for G. duodenalis [14, 35, 36], 
such as GDH-based assay [35], for distinguishing most 
different G. duodenalis assemblages (AI, AII, BIII, BIV, 
C, D and E). However, in clinical mixed infection feces, 
particularly those assemblages found in goats (such as 
AI, AII, and E), the size disparities following GDH gene 
digestion are often ≤ 30 bp (e.g., 70, 80, 90, 100, 120, 150) 
[35]. Such small differences in size can be easily influ-
enced by variations in agarose gel concentration and 

electrophoretic conditions, making it difficult to rapidly 
distinguish these variants and increasing the risk of mis-
interpretation. In contrast, the method described in this 
study results in band size differences of ≥ 64 bp following 
enzyme digestion, allowing for a clearer visual distinction 
of the bands on gel electrophoresis. However, the present 
method does not address finer distinctions among sub-
assemblages. This limitation is particularly relevant given 
reports suggesting that G. duodenalis sub-assemblage AII 
may represent a distinct species and call for a taxonomic 
revision of G. duodenalis [37, 38]. Future research will 
aim to refine this methodology to facilitate the differenti-
ation of sub-assemblages derived from goats. Efforts will 
also focus on overcoming current technical limitations 
by optimizing enzyme restriction profiles, thus enabling 
finer genetic distinctions while maintaining the method’s 
efficiency.

As an enteric protozoan capable of waterborne trans-
mission, G. duodenalis can infect humans and various 
mammals through contaminated drinking water, veg-
etables and irrigation water. Assemblages A and B and 
mixed infections (mixed types of A and B, A and E, B 
and E, and the combination of A, B, and E) of G. duode-
nalis are prevalent in goats, posing a potential threat of 
interspecies transmission between humans and animals, 
especially for those working long-term in sheep farms 
or slaughterhouses. It is therefore necessary to conduct 
further epidemiological investigations and genotyping of 
Giardia among nearby populations and water sources.

Conclusion
This study developed an accurate, efficient, and rapid 
PCR-RFLP genotyping method using the bg sequence of 
G. duodenalis, which facilitates accurate identification 
and effective differentiation of goat-derived G. duodena-
lis assemblages without sequencing. It serves as an effec-
tive tool for the detection and control of both goats and 
human giardiasis, as well as for conducting molecular 
epidemiological investigations.
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