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ABSTRACT
Introduction: Protein microarray is a promising immunomic approach for identifying biomarkers. Based 
on our previous study that reviewed parasite antigens and recent parasitic omics research, this article 
expands to include information on vector-borne parasitic diseases (VBPDs), namely, malaria, schistoso-
miasis, leishmaniasis, babesiosis, trypanosomiasis, lymphatic filariasis, and onchocerciasis.
Areas covered: We revisit and systematically summarize antigen markers of vector-borne parasites 
identified by the immunomic approach and discuss the latest advances in identifying antigens for the 
rational development of diagnostics and vaccines. The applications and challenges of this approach for 
VBPD control are also discussed.
Expert opinion: The immunomic approach has enabled the identification and/or validation of antigen 
markers for vaccine development, diagnosis, disease surveillance, and treatment. However, this approach 
presents several challenges, including limited sample size, variability in antigen expression, false-positive 
results, complexity of omics data, validation and reproducibility, and heterogeneity of diseases. In addition, 
antigen involvement in host immune evasion and antigen sensitivity/specificity are major issues in its 
application. Despite these limitations, this approach remains promising for controlling VBPD. Advances in 
technology and data analysis methods should continue to improve candidate antigen identification, as well 
as the use of a multiantigen approach in diagnostic and vaccine development for VBPD control.
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1. Introduction

Vectors are living organisms that can transmit pathogens from 
person to person or from animals to humans. Most of these 
vectors are hematophagous arthropods, such as mosquitoes, 
ticks, sand flies, tsetse flies, and triatome bugs. Every year, there 
are more than 700,000 deaths globally caused by vector-borne 
diseases such as malaria, dengue, human African trypanosomia-
sis, leishmaniasis, Chagas disease, yellow fever, Japanese ence-
phalitis, and onchocerciasis [1]. Vector-borne parasitic diseases 
(VBPDs) still play important roles in vector-borne infectious dis-
eases and pose a serious threat to humankind globally [2,3]. 
These diseases include malaria, schistosomiasis, leishmaniasis, 
babesiosis, African trypanosomiasis, Chagas disease (American 
trypanosomiasis), onchocerciasis (river blindness), lymphatic 
filariasis and tungiasis. The disease, causative organism, vector, 
geographical distribution, and morbidity data are summarized in 
Table 1. The emergence of insecticide and drug resistance and 

ecological and climatic changes have aggravated the transmis-
sion and prevalence of VBPDs [3]. Despite the consistent efforts 
deployed in the control of malaria and other VBPDs, they remain 
major public health burdens worldwide, particularly in tropical 
and subtropical regions [4], in part due to the shortage of sensi-
tive diagnostics and effective vaccines.

Over the past two decades, the development of geno-
mics, proteomics and other ‘omics’ has led to a new gen-
eration of antigen discovery based on technologies such as 
functional genomics, immunomics, and systems biology 
[5,6]. The immunomic approach is a 21st century approach 
to vaccine development for complex pathogens [7]. This 
approach identifies diagnostic antigens in human patho-
gens, including vector-borne parasitic diseases. These anti-
gens can be used for the development of diagnostic tools 
and vaccines [6]. The immunomic approach involves the 
identification of antigens expressed by a pathogen, 
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followed by the selection of the most promising antigens 
for further analysis. This approach has the potential to 
revolutionize the diagnosis and control of vector-borne 
parasitic diseases by identifying new diagnostic antigens 
and vaccine targets.

The procedure of generating a high-throughput (HTP) pro-
tein microarray for antigen discovery has been described in 
our previous studies [6,8,9] and normally includes the follow-
ing steps: (1) collection of serum samples, (2) selection of 
target genes/open reading frames (ORFs), (3) polymerase 
chain reaction (PCR) amplification of ORFs and preparation of 
linearized vector, (4) cloning of target sequences, (5) protein 
expression and immunoreactivity detection of His-tagged pro-
teins, and (6) antibody profiling. With regard to profiling ser-
ological responses, immunoreactive antigens are statistically 
compared between infection-resistant and infection- 
susceptible host groups to select vaccine targets. Several 
potential vaccine candidates have been identified and tested 
for vaccine development [10–14], whereas antigens for diag-
nostics might be selected by comparing different serum sam-
ples from cohorts of exposed and unexposed individuals. For 
example, a biomarker identification proteomic array was 
established containing 992 validated and predicted S. haema-
tobium proteins, which were screened using serum and urine 
antibodies from populations with epidemics in Gabon, 
Tanzania, and Zimbabwe. Arrayed antigens that were IgG- 
reactive predicted to be diagnostically informative, were 
then evaluated by ELISA using the same samples used to 
probe arrays, and samples from individuals residing in a low 
endemicity setting. Finally, two of these antigens, Sh-TSP-2 
and MS3_01370, were screened and they could be used as 
sensitive, specific, and field-deployable diagnostics to support 

Article highlights 

● High -throughput (HTP) protein microarray is a promising approach 
for identifying biomarkers for vector-borne parasitic disease (VBPD) 
control.

● Antigen data were collected from articles published in English 
between April 2006 and December 2022 from PubMed and Web of 
Science using the following key words: ‘immunomics,’ ‘immunopro-
teomics,’ ‘protein microarrays,’ ‘proteome array,’ ‘plasmodium,’ ‘leish-
mania,’ ‘tryromycin,’ ‘babesia,’ ‘antigens,’ and ‘vector-borne parasitic 
diseases.’

● A total of 192 published articles were screened, and the records were 
further sorted by the advanced key word ‘antigens.’ Seventy-seven 
records of protein microarray studies that focused on Plasmodium, 
Schistosoma, Leishmania, Trypanosoma, Babesia, and filaria worms 
were obtained.

● Although the immunomic approach has challenges, it enables the 
identification and/or validation of antigen markers for vaccine devel-
opment, diagnosis, disease surveillance, and treatment.

● Advances in technology and data analysis methods are needed to 
improve candidate antigen identification. In addition, the combina-
tion of multiple antigens could be helpful for detecting antibodies 
against VBPD infections and developing vaccines for controlling 
VBPDs to accelerate elimination.

Table 1. Notable vector-borne parasitic diseases that threaten global health.

Disease Causative agents
Vector/ 

intermediate host Geographical distribution
Point 

Prevalence# DALYs*

Malaria Plasmodium falciparum, 
P. vivax, 

P. malaria, P. knowlesi, 
P. ovale

Mosquitoes: Anopheles spp. (n = 30–40),  
e.g. A. gambiae, A. stephensi

Sub-Saharan Africa, Southeast 
Asia, South America

180,715,775 46,437,811

Schistosomiasis Schistosoma spp., e.g. 
S. japonicum, 

S. intercalatum, 
S. haematobium, 

S. mansoni, S. mekongi, 
S. guineensis

Freshwater snails: Oncomelania hupensis, 
Biomphalaria glabrata, Bulinus truncatus

Southeast Asia, Africa, South 
America

139,967,778 1,638,072

Onchocerciasis Onchocerca volvulus Blackflies: Simulium damnosum, 
S. neavei, S. ochraceum, S. exiguum, 
S. oyapockense

Sub-Saharan Africa, Central and 
South America

19,063,570 1,230,433

Lymphatic filariasis Filarial nematodes: Brugia 
malayi, B. timori, 
Wuchereria bancrofti

Mosquitoes: Aedes spp., Culex spp., 
Anopheles spp., Mansonia spp., 
Coquillettida juxtamansonia

Africa, Asia, South America 71,852,335 1,628,649

Chagas disease Trypanosoma cruzi Triatomines: Triatoma dimidiate, Rhodnius 
prolixus, T. gerstaeckeri, 

T. infestans, Paratriatoma hirsute,

Central and South America 6,469,284 275,377

Leishmaniasis Leishmania donovani, 
L. major, 

L. infantum, L. tropica

Sand flies: Phlebotomus sinensis Middle East, Central and South 
America, Asia, Southern Europe, 
East Africa

4,575,092 696,703

African 
Trypanosomiasis

Trypanosoma brucei 
gambiense, 

T. b. rhodesiense

Tsetse fly: Glossina morsitans, 
G. fuscipes, G. palpalis, G. tachinoides

Sub-Saharan Africa 3,768 82,615

Babesiosis Babesia spp., e.g. Babesia 
microti, 

B. divergens, B. duncani

Ticks: Ixodes scapularis, I. ricinus Mainly in Northeast United States, 
Asia, Europe

2,418* 8*α

#Prevalence and DALY data were retrieved from the Global Burden Disease results tool: Global Burden of Disease Collaborative Network. Global Burden of Disease 
Study 2019 (GBD 2019) Results Seattle, United States: Institute for Health Metrics and Evaluation (IHME), 2020. Available from https://vizhub.healthdata.org/gbd- 
results/. 

DALYs, disability-adjusted life years. * Data found were those of the United States of America only (Source: Centers for Disease Control and Prevention (CDC). 
Surveillance for babesiosis — United States, 2019. Annual Summary. Atlanta, Georgia: U.S. Department of Health and Human Services, CDC, 2021).α Cases of 
deaths reported rather than DALYs. 
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schistosomiasis control and elimination initiatives, with parti-
cular focus on post-elimination surveillance [15].

HTP protein microarrays provide a unique opportunity to 
explore and analyze humoral immune responses to vector- 
transmitted organisms such as P. falciparum (Pf) [8,16–18], 
P. vivax (Pv) [19,20], S. japonicum [21–23], S. mansoni [24], 
L. infantum [25], B. microti [26–28], T. cruzi [29,30], and several 
other human parasitic pathogens, including Echinococcus mul-
tilocularis, E. granulosus [31], Necator americanus [32], and 
Toxoplasma gondii [33–35]. This study reviews the applications 
of protein microarrays in the identification and testing of 
candidate antigens associated with malaria, schistosomiasis, 
leishmaniasis, babesiosis, African trypanosomiasis, Chagas dis-
ease, onchocerciasis, and lymphatic filariasis. Advances in the 
validation of antigen markers and research priorities are dis-
cussed to suggest candidates for the rational development of 
effective diagnostics and vaccines. Finally, the application of 
the immunomic approach for VBPD control is also reviewed.

2. High-throughput protein microarrays and antigen 
identification/discovery

Protein chip arrays were first developed to study HTP gene expres-
sion, and commercial antibody screening on chip-size protein 
microarrays was performed approximately 25 years ago [36]. 
Protein chip ‘fabrication’ was improved from 2001–2006 to eluci-
date enzymatic analysis and protein interactions [37,38] and has 
become a suitable assay for determining the serodiagnosis of 
infectious diseases. The first human parasite-based HTP protein 
microarray was generated against serum from malaria-infected 
individuals harboring Pf antigens in 2006 [39], which provided 
a significant understanding of humoral immune responses to 
malaria parasites. Two years later, the approach was performed 
more efficiently by profiling antibody responses to Pf antigens [17]. 
This effort ultimately provided general knowledge on receptor – 
ligand interactions to inform immune-dominant antigens [6,9].

Protein microarray is an attractive alternative method, espe-
cially for high-throughput studies or studies that focus on mem-
bers of protein families, as it represents an ideal high-throughput 
platform that can simultaneously study antibody responses to 
hundreds of proteins and provides insights into natural immunity 
development [40]. Moreover, proteomics offers a major 

advantage in the discovery of new biomolecular targets because 
of its ability to simultaneously characterize proteomes and sub-
proteomes without any prior knowledge of the nature of proteins 
[41]. Overall, the HTP protein microarray is an up-and-coming 
research field that studies aspects of immune responses and 
identifies antigen candidates in conjunction with traditional and 
conventional approaches such as mass spectrometry, reverse 
immunogenetics, 2D gel electrophoresis, western blotting, and 
enzyme-linked immunosorbent assay (ELISA).

3. Identification of antigen markers of VBPDs using 
protein microarrays

Related articles were searched in the PubMed and Web of Science 
databases with the following keywords: ‘immunomics’ OR ‘immu-
noproteomics’ OR ‘protein microarrays’ OR ‘proteome array’ AND 
‘plasmodium’ OR ‘leishmania’ OR ‘babesia’ OR ‘trypanosoma’ OR 
‘onchocerca’ OR ‘brugia’ OR ‘wuchereria.’ A total of 192 published 
articles were screened, and the records were further sorted by the 
advanced key word ‘antigens.’ A total of 77 records of protein 
microarray studies focused on Plasmodium, Schistosoma, 
Leishmania, Trypanosoma, Babesia, and Filaria were obtained. 
The final criteria for selection were based on the following: (1) 
published research articles on pathogens causing VBPDs and (2) 
involved antigen identification via protein microarrays, while unre-
lated articles were excluded. Finally, a list of 64 articles published 
between 2006 and 2022 was retained. The VBPDs for which anti-
gen markers have been identified and/or tested using protein 
microarrays include malaria, schistosomiasis, leishmaniasis, babe-
siosis, trypanosomiasis, onchocerciasis, and filariasis (Figure 1a,b).

3.1. Protein microarrays for identifying malaria antigens

Studies on Plasmodium have profiled antigen-specific antibodies 
associated with anti-disease immunity in Papua New Guinea- 
exposed children [42]. Other investigations have identified and 
validated serological biosignatures using serum samples from 
individuals from endemic areas in the western Kenyan highlands 
and at three field sites in Rourkela, Nadiad and Chennai, India, as 
well as in Yunnan Province, China [8,16,43]. Recently, a study 
revealed that natural protective antibody responses against 

Figure 1. Immunomics-based studies related to vector-borne parasitic diseases (VBPDs). (A) Immunomic studies related to the identification of VBPD antigens from 
2012 to 2022. (B) Study repartition of antibody responses to VBPDs via the immunomic approach from 2012 to 2022.
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individuals experimentally challenged with Pf sporozoites were 
associated with new target candidates [44].

High-throughput protein microarrays have contributed to the 
development of numerous Plasmodium candidate antigens, as 
well as to the discovery of new antigens that were not identified 
by traditional methods [8,19,45–47]. In our previous studies 
[19,48], we identified 169 highly immunoreactive antigens, 12 
of which were well-characterized Pv vaccine antigen candidates; 
the remaining 157 have not been reported previously. In 
a further study that profiled natural antibody responses to Pf 
antigens, we identified 30 highly immunogenic merozoite anti-
gens, including 10 well-known Pf blood-stage vaccine candi-
dates, and reported the first seven proteins and two 
hypothetical proteins associated with immunogenicity [8].

In a recent study, two new Pf antigens, star-related lipid transfer 
protein (START) and protein disulfide isomerase 8 (PDI8), were 
detected by immunomicIgGscreening and may be used to differ-
entially diagnose subclinical malaria in children [49]. Peptide 
microarrays have also been applied to identify epitope candidates, 
which defined correlates of vaccine protection and measured 
strain-specific vaccine-induced antibodies [50]. Moreover, the Pf 
circumsporozoite protein (PfCSP) [51], Pf apical membrane antigen 
1(PfAMA1) [52,53] and Pf merozoite surface proteins 1 and 3 
(PfMSP1 and PfMSP3) [54,55] have been validated by protein 
microarrays and have undergone clinical development. Among 
the Pv antigens that have been validated by this approach, 
PvCSP, the leading vaccine candidate, has been assessed in clinical 
trials [56]. It is important to recall that in P. vivax infections, hypno-
zoites persist in the liver for long durations in dormant forms 
(latent liver stage) and remain undetectable with common diag-
nostics. Eight antigen markers capable of classifying individuals 
with vivax infections who may harbor hypnozoites were recently 
developed in malaria-endemic regions of Thailand, Brazil, and the 
Solomon Islands [57]. Nevertheless, two potential biomarker can-
didates, TF (serotransferrin) and HPX (hemopexin), were identified 
by the immunoproteomic approach for knowlesi malaria infection 
[58]. Plasmodium knowlesi was identified as the fifth major malaria 
parasite that regularly infects humans [59]. It can cause severe 
clinical symptoms and even lead to mortality as a result of hyper-
parasitemia in a short period of time. The study improved the 
current understanding of humoral immune responses to knowlesi 
malaria infection and identified potential biomarkers for 
P. knowlesi infection [58] (Table 2).

3.2. Protein microarrays for identifying schistosomiasis 
antigens

Schistosomiasis threat is classified second behind malaria among 
the VBPDs. Antigen screening for serodiagnostics and vaccines 
against the disease has also been intensively performed, and 
parasite-specific immunodominant targets have been identified 
for clinical development. Immunomics-based studies have vali-
dated a panel of potential antigens and have identified novel 
antigenic targets for schistosomiasis [11,21,22,24,72–74]. In 
a previous study that highlighted an integrated immunoproteo-
mic approach for the analysis of S. japonicum tegument proteins, 
we reported for the first time 30 highly immunoreactive tegu-
ment antigens [22]. Several of the antigens that we validated 
showed strong immunogenicity (Table 3), of which the 

recombinant 28-kDa glutathione S-transferase of 
S. haematobium (rSh28GST), S. mansoni tetraspanin 2 
(Sm-TSP-2), and S. japonicum associated-protein 23 (Sj23) anti-
gens have progressed to clinical trials [12,77]. Very recently, an 
integrated immunomic approach was used to identify novel 
antibody markers for the diagnosis of urogenital schistosomiasis 
is caused by S. haematobium. From the list of 253 candidates that 
were screened, the authors identified two targets, Sh-TSP-2 and 
MS3_01370, which are considered to have high application 
potential [15]. 

3.3. Protein microarrays for identifying leishmaniasis 
antigens

Leishmaniasis remains a major public health problem through-
out the tropics, and serodiagnostics and vaccines are strongly 
needed in this regard. The 35 Mb genome of Leishmania was 
sequenced in late 2002. It contains approximately 8,500 genes, 
and it is assumed that the genome will translate into more than 
10,000 proteins [78]. These major research advances could even-
tually allow rapid screening for specific parasite genotypes and 
assist in diagnostic and epidemiological studies. Immunomics- 
based studies have validated a panel of potential antigens and 
identified novel targets for leishmaniasis (Table 4). An immuno-
proteomic approach was recently performed in Brazil using visc-
eral leishmaniasis patient sera, as well as sera from Chagas 
disease patients and healthy endemic controls. The same study 
identified 29 and 21 valid sequences in the promastigote and 
amastigote stages of Leishmania and Trypanosoma parasites, 
respectively [25]. In another study in Brazil, a novel L. infantum 
hypothetical protein called LiHyGwas identified. The antigen can 
be used for accurate serum diagnosis of visceral leishmaniasis in 
dogs and humans and can serve as a potential prognostic marker 
of human disease [83]. 

3.4. Protein microarrays for identifying babesiosis 
antigens

Babesiosis is caused by the invasion of erythrocytes by 
Babesia parasites. Babesia microti is considered a major etio-
logical agent of emerging human babesiosis, a VBPD trans-
mitted by ticks. To identify pathogen-encoded factors 
involved in host-parasite interactions, Silva and colleagues 
screened 174 B. microti proteins to construct a proteome 
array that included several predicted parasite secretory pro-
teins. The authors used the immunoproteomic approach 
and identified several novel antigens that trigger strong 
host immune responses during the onset of infection [84]. 
Moreover, antibody responses to various B. microti BmGPI 
antigens were detected in both humans and animal reser-
voirs, and BmGPI12 was identified as the best biomarker of 
infection because of its high sensitivity and specificity when 
used in a microarray antibody assay [28]. Therefore, 
BmGP112 is a promising candidate biomarker for the detec-
tion of B. microti antibodies that might be useful in blood 
screening to prevent transfusion-transmitted babesiosis. 
Recently, we used antisera from BALB/c mice infected with 
B. microti to screen diagnostic antigens of B. microti by 
selecting 204 target sequences from homologous proteins 
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between B. microti and B. bovis genome sequences from the 
PiroplasmaDB (http://piroplasmadb.org) using protein 
arrays. In this study, we identified 10 (5.9%, 10/169) highly 
immunoreactive proteins, most (80%, 8/10) of which had 
not been characterized before [26]. These data suggest that 
these immunoreactive proteins could potentially be useful 
as candidate antigens for the development of diagnostics 
for babesiosis. In a further study, we applied protein micro-
arrays and screened 87 targeted proteins in the plasma of 
an infected mouse model [27]. Later, six antigens were 
selected, and short synthetic peptides were screened via 
microarray platforms; five antigenic peptides were identified 
from B. bovis (ApBb) and further validated via ELISA [85]. 
Finally, biomarkers for disease progression have been iden-
tified using immunoreactivity profiles, which represent use-
ful information for the rational development of diagnostics 
and vaccines in the future. Table 5 provides a list of Babesia 
antigens identified and/or validated using protein 
microarrays.

3.5. Protein microarrays for identifying trypanosomiasis 
antigens

Chagas disease is caused by the parasitic hemoflagellate 
T. cruzi. It is a lifelong and debilitating disease endemic to 
the Americas. It is estimated that six to seven million peo-
ple have been infected, with approximately 50,000 new 
cases each year [87,92]. Despite this alarming situation, 
the lack of available vaccines and effective drugs means 
that the main control strategy for Chagas disease still relies 
on the prevention of parasite transmission. Significant tar-
gets have been identified to improve the serological diag-
nosis of Chagas disease (Table 5). A high-density peptide 
chip, a highly multiplexed platform based on next- 
generation sequencing, helped identify 2,031 disease- 
specific peptides and 97 novel parasite antigens. These 
data set the stage for high-throughput biomarker discovery 
screenings and proteome-wide studies of immune 
responses against Trypanosoma pathogens [30].

Table 2. List of records obtained from PubMed and web of science searches for malaria antigen screening via protein microarrays.

Species Disease Antigen candidate identified/validated, description References

Pf Malaria MSP1,2,3,10 (merozoite surface protein 1,2,3), GPI-AP 
LSA1,3 (liver-stage antigen1, 3) 
AMA1 (apical membrane antigen 1), moving junction 
EBA-175 (erythrocyte-binding antigen), EBL family 
CSP (circumsporozoite protein), virulence 
SSP2/TRAP, hypothetical 
STARP (sporozoite threonine asparagine-rich protein) 
PfEMP1 (Pf erythrocyte membrane protein 1) 
SERA5 (serine repeat antigen 5) 
RALP1 (rhoptry-associated leucine zipper-like protein) 
MRSP2 (MSP7-like protein) 
ETRAMP11,14 (early transcribed membrane protein 11,14) 
Conserved Plasmodium protein, hypothetical 
D18(Protein disulfide isomerase) 
PTP5 (EMP1-traffificking protein) 
PfEMP1 (VAR)erythrocyte membrane protein 1 
ApiAP2 (transcription factor with AP2 domain(s)) 
Transmembrane emp24 domain containing protein 
Asparagine-rich antigen 
Conserved protein, unknown function 
SYN6 (SNARE protein, putative) 
HSP70 (heat shock protein 70)

[8,10,16,18,20,39,43,60,61] 
[10,16–18,39,45,46,60,62] 

[8,17,18,39,45,50,63] 
[8,10,16,17,45,46] 

[18,39,45,64] 
[17,39,45,49] 

[16,18,45,46,64] 
[18,20,45,46,60,65] 

[20,45,46] 
[8] 

[8,20] 
[8,10,20] 

[8,10,18,20,45,46,64] 
[49] 
[43]

Pv Malaria MSP1 (merozoite surface protein 1), GPI-AP 
AMA1 (apical membrane antigen 1) 
PvCSP (circumsporozoite protein) 
Pv12, GPI-anchored protein, Cys6 family 
MSP7, 8, 10 (merozoite surface protein 7,8,10), 
GPI-anchored proteins 
ETRAMP11 (early transcribed membrane protein) 
Hypothetical 
WD, Gbeta-repeat domain containing protein 
Protein transport protein SFT2, putative 
Transcription factor with AP2 domain(s), putative (ApiAP2) 
Plasmodium exported protein, unknown function 
Major blood stage surface antigen Pv200 
Zinc finger protein, putative 
Hypothetical, predicted Pf homolog liver stage antigen 3 
RBP2b (reticulocyte binding protein 2b) 
RAMA (rhoptry-associated membrane antigen) 
MSP1–19 (merozoite surface protein1–19) 
Pv-fam-a (tryptophan-rich antigen) 
PvEBPII (erythrocyte-binding protein II) 
MSP3.10 (merozoite surface protein 3.10)

[44,48,66,67] 
[48,68] 

[69] 
[44,48,57,70] 

[43,44,48,68,69,71] 
[19,43,48] 

[43,48] 
[43] 
[57]

Pk Malaria TF (serotransferrin) 
HPX (hemopexin)

[58]

EXPERT REVIEW OF PROTEOMICS 5

http://piroplasmadb.org


Table 3. List of records obtained from PubMed and web of science searches for schistosomiasis antigen screening via protein microarrays.

Species Disease Antigen candidate identified/validated, description References

Sj Schistosomiasis Butyl-cholinesterase 
Sj-TST-26 (tetraspanin), a homolog of human TST-33 
Microsomal glutathione-S-transferase (GST) 
Calpain 
Extracellular superoxide dismutase (Cu–Zn) 
Sj23, 29 (S. japonicum membrane-associated protein 23,29) 
STIP1 (homology and U-Box-containing protein 1) 
PPase (ADP-ribose pyrophosphatase) 
Hypothetical/guanylate kinase associated 
SjTHBS1 (thrombospondin 1), hypothetical 
Hypothetical protein 
Sj-L6 L-1 (Ly-6-like protein 1)

[74] 
[74–76] 
[74,75] 

[11,21,23,72,76] 
[22] 
[22] 
[75] 
[75] 
[23] 

[23,75]

Sm Schistosomiasis Sm-TSP-2 (S. mansoni tetraspanin) 
Smp80 (calpain) 
Sm14, fatty acid-binding protein (FABP) family 
Sm-CaM-2,3 (S. mansoni calmodulin 2,3) 
Sm-TSP-3 (25-kDa integral membrane protein, Tetraspanin 3) 
Sm29 (S. mansoni membrane-associated protein 29)

[11,72] 
[11] 
[11] 
[11] 

[11,23,24,72] 
[11,24,72,75,76]

Sh Schistosomiasis Acetylcholinesterase, Tetraspanin-33 
rSh28GST, glutathione S-transferase 
Facilitated glucose transporter member 1 
Sodium/potassium transporting ATPase subunit 
Calpain 
Sh-TSP-2(Tetraspanin 2) 
MS3_01370(CD63 antigen)

[74] 
[15] 
[15]

Sj, Schistosoma japonicum; Sm, Schistosoma mansoni; Sh, Schistosoma haematobium. 

Table 4. List of records obtained from PubMed and web of science searches for leishmaniasis antigen screening via protein microarrays.

Species Disease Antigen candidate identified/validated, description References

Li  

Lp

Visceral leishmaniasis or Cutaneous 
leishmaniasis 

Mucosal leishmaniasis

Actin 
Endonuclease III 
GTP-binding protein 
Heat shock proteins, HSP70，HSP 83–1 
Eukaryotic initiation factor 5a, putative 
Parafagellar rod protein 1D 
Cytochrome oxidase subunit IV, putative 
MORN repeat-containing protein 1 
Translation elongation factor 1-beta, putative 
Tryparedoxin peroxidase the paraflagellar rod proteins (PFR) 
cell surface protease leishmanolysin (GP63) 
GRP78 
CAS/CSE/importin domain protein 
Endonuclease III 
Paraflagellar rod protein 1C,1D 
Hypothetical protein 
RNA-binding protein 
Proteasome activator protein 
Peroxidoxin 
Alpha-tubulin, Beta-tubulin 
Pyridoxal kinase 
Elongation factor 1-beta,2 
ALBA-domain protein 1 
GTP-binding protein 
IQ calmodulin-binding motif containing protein 
Poly(A) polymerase 
Calpain-like cysteine peptidase 
Cytochrome oxidase subunit IV 
Right-handed beta helix region/periplasmic copper-binding protein 
Proteasome activator protein pa26 
Peroxidoxin 
Eukaryotic translation initiation 5A 
Leucine-rich repeat protein 
Putative CAS/CSE/importin domain protein 
Glucosamine 6-phosphate n-acetyltransferase 
Mannosyl oligosaccharide glucosidase 
Cytochrome b5-like haem/steroid binding domain containing 

protein 
PFPI/DJ-1-like protein 
Enolase 
Eukaryotic initiation factor 4a 
B-box zinc finger containing protein

[79–81] 
[25,79] 

[79] 
[82]

Li, Leishmania infantum; Lp, Leishmania panamensis. 
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Table 5. List of records obtained from PubMed and web of science searches for babesiosis, chagas disease, onchocerciasis, and lymphatic filariasis antigen 
screening via protein microarrays.

Species Disease Antigen candidate identified/validated, description References

Bmi Babesiosis Herpes_BLLF1 domain 
GCC-2 GCC-3 domain 
2A & PRK domain 
S3 Ae domain 
PTZ domain 
BmGPI proteins 
BMN1–3 protein

[26] 
[26,27] 
[26–28]

Bb Bovis babesiosis Hypothetical protein 
Membrane protein 
Subtilisin-like protein 
Apical membrane antigen 1 (RGSDDTSESSDRYSG) 
Apical membrane antigen 1 (ASRGQLLNSRRGSDD)

[85]

Tc Chagas disease GDH (glutamate dehydrogenase) 
Cytoplasmic antigen (CRA)/calpain cysteine peptidase 
Cetrotransposon hot spot (RHS) protein, putative 
Kinetoplast DNA-associated protein, putative 
Lectin, putative 
Malate dehydrogenase, putative 
60S ribosomal protein L7a, putative, antigenic protein 
TSSA (trypomastigote small surface antigen) 
TryP (Tryparedoxin Peroxidase)

[29,30] 
[29] 

[29,86] 
[29,86] 

[29,86,87]

Ov Onchocerciasis OVOC9752 (acpS; holo-[acyl-carrier protein] synthase) 
OVOC7453 (groEL, HSPD1; chaperonin GroEL) 
OVOC12400 (PRPF31; U4/U6 small nuclear ribonucleoprotein PRP31) 
OVOC9748 (GALNT; polypeptide N-acetylgalactosaminyl transferase) 
OVOC9325 (KIDINS220, ARMS; ankyrin repeat-rich membrane spanning protein) 
OVOC9988 (ROR2, NTRKR2; receptor tyrosine kinase-like orphan receptor 2) 
OVOC9592 (SNRP70; U1 small nuclear ribonucleoprotein 70kDa) 
OVOC8985 (GGPS; geranylgeranyl diphosphate synthase, type ll) 
OVOC12449 (POU3F, OTF; POU domain transcription factor, class 3) 
OVOC9475 (SUMO, SMT3; small ubiquitin-related modifier) 
OVOC4612 (PRCC; proline-rich protein PRCC) 
OVOC6327 (MYO5; myosin V) 
OVOC5718 (RBM7; RNA-binding protein 7) 
OVOC7381 (EPRS; bifunctional glutamyl/prolyl-tRNA synthetase) 
OVOC11487 (GAPDH, gapA; glyceraldehyde 3-phosphate dehydrogenase) 
OVOC10067 (K08473; nematode chemoreceptor) 
OVOC10103 (ECE; endothelin-converting enzyme) 
OVOC5823 (DCTN5; dynactin 5) 
OVOC9990 (ROR2, NTRKR2; receptor tyrosine kinase-like orphan receptor 2) 
OVOC2486 (NDUFA1; NADH dehydrogenase(ubiquinone)1 alpha subcomplex S) 
OVOC10995 (ALDH5A1; succinate-semialdehyde dehydrogenase) 
OVOC3203 (CAP1_2, SRV2; adenylyl cyclase-associated protein) 
OVOC11847 (NOVA; RNA-binding protein Nova) 
OVOC1213 (EDD1, UBR5; E3 ubiquitin-protein ligase EDD1) 
OVOC12448 (SF3A1, SAP114; splicing factor 3A subunit 1) 
OVOC7430 (SOS; son of sevenless) 
OVOC5419 (HSD17B10;3-hydroxyacyl-CoA dehydrogenase/3-hydroxy-2-methyll) 
OVOC1897 (RP-L5e, RPL5; large subunit ribosomal protein L5e) 
OVOC11218 (glgB;1,4-alpha-glucan branching enzyme) 
OVOC10638 (APPBP1; amyloid beta precursor protein binding protein 1) 
OVOC10982 (ARFGAP2_3; ADP-ribosylation factor GTPase-activating protein 2/3) 
OVOC9384 (MRD1, RBM19; multiple RNA-binding domain-containing protein 1) 
OVOC10469 (hypothetical secreted protein precursor) 
OVOC10602 (Conserved secreted protein precursor - signalP detected) 
OVOC11950 (hypothetical secreted protein precursor) 
OVOC3261 (hypothetical secreted protein precursor) 
OVOC5127 (DNA-binding protein of the nucleobindingfamily - signalP detected) 
OVOC8491 (fatty acid retinoid binding protein 2)

[88] 
[89]

(Continued )
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3.6. Protein microarrays for identifying other VBPD 
antigens

Studies on antigen discovery and/or testing for other VBPDs, 
including those for lymphatic filariasis [90,91] and onchocer-
ciasis [88,89], have also been performed (Table 5). A previous 
study highlighted an integrated immunoproteomic approach 
that identified adult female O. volvulus antigens for the devel-
opment of serodiagnostics for human onchocerciasis. In that 
study, the authors identified 241 highly immunoreactive pro-
teins, which included 33 new proteins that are promising 
serodiagnostic antigens [88]. In addition, a further study iden-
tified seven biomarkers of active patent infection (OVOC10469, 
OVOC10602, OVOC11950, OVOC3261, OVOC5127, OVOC8491, 
and OVOC9988) that have not been previously reported based 
on IgG4 responses in infected individuals. These highly anti-
genic volvulus proteins could serve as specific and sensitive 
biomarkers of patent infection [89].

4. Conclusion

This review highlights research on B-cell epitopes of surface 
antigens of major vector-borne parasites, including 
Plasmodium, Schistosoma, Leishmania and Babesia, to provide 
insights for the rational design of blood-stage malaria vaccine 
candidates. Additionally, the potential applications of biomar-
kers in infections for early diagnosis and prognostic purposes 
were explored. These findings collectively contribute to advan-
cing our understanding of host – parasite interactions, antigen 
discovery, and immune responses in vector-borne parasitic 
diseases, paving the way for improved disease control strate-
gies, diagnosis, therapy, and vaccine design.

5. Expert opinion

The identification of antigen markers via the immunomic 
approach can be applied to VBPD control in the following 
ways: vaccine development, diagnosis, disease surveillance, 
and treatment.

Protein/peptide arrays enable the rapid discovery of new 
vaccine candidate antigens for preclinical and clinical devel-
opment. The identification of antigens can aid in the develop-
ment of more effective vaccines by targeting specific antigens 
that are essential for the survival of the pathogen. Applications 
of this technology for vaccines include (1) the discovery of 
candidate antigens for subunit vaccines through the analysis 
of correlates of protection, (2) immunogenicity studies for the 
optimization of vaccine formulations and dosing regimens, (3) 
subtyping of immune responses (e.g., antibody isotypes and 
subclasses), and (4) the quantification of adjuvant effects on 
the immune response after vaccination. However, a large 
repertoire of potential antigen candidates for VBPDs are 
genetically variant, as they undergo host immune selection. 
Therefore, research on combinations of vaccines that target 
different parasite life cycle stages may be needed to achieve 
high efficacy. For example, the combination of multivalent 
vaccines and conserved epitope vaccine approaches can be 
used to select vaccines with broad reactivity for preclinical 
evaluation and inclusion in multiantigen vaccines for clinical 
trials.

The identification of specific antigen markers can be 
used to develop diagnostic tools for the detection of 
VBPDs. Antibody-based detection of infectious diseases is 
an ideal and cost-effective platform for diagnostic testing. 
Protein microarray technology facilitates the discovery of 
proteins targeted by antibodies that provide both sensitive 
and specific detection of infection and active disease. With 
well-characterized samples, a clear pathway from discovery 
to development of a new serodiagnostic could be estab-
lished [14]. Under the premise of the application of 
advanced technologies such as proteomics, the serological 
diagnosis of insect-borne parasitic diseases has improved, 
but more sensitive and specific diagnostic methods that 
meet these standards need to be established to achieve 
permanent control of these diseases. In addition, large- 
scale evaluations to assess the advantages and disadvan-
tages of different antigens and diagnostic technologies are 
needed for a sensitive and specific gold standard. Here, 

Table 5. (Continued). 

Species Disease Antigen candidate identified/validated, description References

Bma Lymphatic filariasis Bm1_21705 (actin 1, putative) 
Bm1_45215 (intermediate filament protein, putative) 
Bm1_40320 (Disorganized muscle protein 1, putative) 
Bm1_19805 (small heat shock protein, putative) 
Bm1_04450 (Paramyosin, putative) 
Bm1_02615 (Paramyosin, identical) 
Bm1_48810 (EF hand family protein) 
Bm1_13015 (Nematode cuticle collagen N-terminal domain containing protein) 
Bm1_01235 (Tropomyosin-related) 
Bm1_49075 (Calponin homolog OV9M, putative) 
Bm1_40715 (myosin heavy chain, putative) 
Bm1_54705 (Nematode cuticle collagen N-terminal domain containing protein) 
Bm1_50805 (Myosin tail family protein) 
Bm1_40465 (Cuticular glutathione peroxidase precursor, putative) 
Bm1_00935 (myosin heavy chain B (MHC B), putative) 
Bm1_16060 (carbohydrate phosphorylase, putative) 
Bm1_14060 (myosin heavy chain B (MHC B), putative) 
Bm1_17485 (Nematode cuticle collagen N-terminal domain containing protein) 
Bm1_02060 (Tropomyosin family protein) 
Bm1_53470 (glutamine synthetase, putative)

[90,91]

Bmi, Babesia microti; Bb, Babesia bovis; Tc, Trypanosoma cruzi; Ov, Onchocerca volvulus; Bma, Brugia malayi. 

8 X. ZHOU ET AL.



again, the use of multiple antigen combinations could be 
helpful for detecting antibodies against concurrent and 
(recent) past infections caused by VBPDs. Although serolo-
gical testing still has several limitations, it is still a valuable 
approach for controlling and accelerating the elimination of 
VBPDs [93,94].

In disease surveillance and treatment, the identification 
of antigen markers via the immunomic approach can be 
used for disease surveillance and monitoring and for devel-
oping targeted therapies for VBPDs. This approach can aid 
in the early detection of outbreaks and in the monitoring of 
disease incidence. In addition, targeted therapies can be 
developed by targeting specific antigens that are essential 
for the survival of the pathogen.

The identification of antigen markers by the use of the 
immunomic approach for VBPD control can present several 
challenges. These challenges include the following:

(i) Limited sample size: Antigen discovery often requires 
the analysis of a large number of samples to establish 
reliable associations between specific antigens and 
disease. However, obtaining a sufficient number of 
samples, especially for rare diseases or in resource- 
limited settings, can be challenging

(ii) Variability in antigen expression: Antigen expression 
can vary among individuals, pathogens, and disease 
stages. This variability can make it difficult to identify 
consistent antigen markers that can be used for dis-
ease control.

(iii) False-positive results: The upregulation of surface 
markers used as antigen markers can be influenced 
by factors other than the specific antigen of inter-
est. For example, cell culture contaminants or fac-
tors secreted by bystander cells can lead to false- 
positive results.

(iv) Complexity of omics data: The identification and appli-
cation of antigen markers often involve the analysis of 
complex omics data, such as genomic, transcriptomic, 
or proteomic data. Analyzing and interpreting these 
large datasets can be challenging, requiring expertise 
in statistical analysis and bioinformatics.

(v) Validation and reproducibility: Once potential antigen 
markers are identified, they need to be validated in 
independent cohorts to ensure their reliability and 
reproducibility. Validation studies can be time- 
consuming and resource-intensive.

(vi) Heterogeneity of diseases: Many VBPDs can exhibit 
heterogeneity in terms of pathogen strains, host 
immune responses, and disease manifestations. This 
heterogeneity can complicate the identification and 
application of antigen markers that are universally 
applicable for disease control.

Despite these challenges, the identification and application 
of antigen markers via immunomics remains a promising 
approach for VBPD control. Advances in technology and 
data analysis methods should continue to improve the 
ability to identify and utilize antigen markers for the pre-
vention, diagnosis, and treatment of various diseases.
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