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Abstract 

Background

Necator americanus is the predominant species causing hookworm infections in humans. 

Despite advancements in prevention strategies, mild cases of infection still occur, high-

lighting the need for improved detection technology. Recombinase Polymerase Ampli-

fication (RPA) is an isothermal molecular diagnostic known for its sensitivity, speed, 

portability, and widespread application in detecting various pathogens. Although several 

molecular assays are available for N. americanus, they have limitations in detecting mild N. 

americanus infections.

Methods

Fluorescent RPA primers and probes targeting the N. americanus internal transcribed 

spacer 2 (ITS2) gene were developed. The method’s detection limit was assessed via 

serial dilution of genomic DNA. Specificity was confirmed against Clonorchis sinensis, 

Schistosoma japonicum, Fasciola hepatica, Ascaris lumbricoides, Enterobius vermicularis 

and Ancylostoma duodenale. Thirty samples identified as positive by Kato-Katz, along 

with 11 samples identified as negative by the method, were tested to evaluate the sen-

sitivity and specificity of fluorescent RPA. Additionally, 287 field samples were tested for 

validation with these methods. All positive samples were identified as either N. americanus 

or A. duodenale.

http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pntd.0013007&domain=pdf&date_stamp=2025-04-21
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Results

This study successfully developed a fluorescent RPA assay targeting the ITS2 gene of N. 

americanus. The length of the amplified fragment was 237 bp. Optimized conditions were 

achieved, resulting in a minimum detection limit of 1fg/µL, with no cross-reactivity with 

other pathogens. In laboratory validation, the fluorescent RPA assay demonstrated 100% 

sensitivity (30/30) and 100% specificity (11/11) compared to the Kato-Katz, and 100% sen-

sitivity (29/29) and 91.7% specificity (11/12) when compared to the semi-nested PCR. In 

field validation using human fecal samples, the fluorescent RPA assay showed a sensitiv-

ity of 90.0% (36/40) and a specificity of 91.1% (225/247) compared to the Kato-Katz. And 

the sensitivity of the fluorescent RPA method compared to the semi-nested PCR method 

was 100% (34/34), while the specificity was 90.5% (229/252).

Conclusions

The fluorescent RPA assay presents a rapid and dependable method for detecting N. 

americanus in fecal samples. Its high sensitivity and specificity provide significant utility for 

field surveillance and early identification of N. americanus infections. This advancement 

could facilitate the rapid molecular diagnosis of N. americanus disease in hookworm- 

endemic regions.

Author summary
The fluorescent recombinase polymerase amplification (RPA) technique is a state-of-
the-art method for isothermal DNA amplification, utilizing a portable instrument and 
lyophilized reagents. This innovative approach allows for on-site testing using a portable 
fluorescence detector, significantly enhancing its utility in field settings. In our study, we 
evaluated 287 samples obtained directly from the field. The conventional semi-nested 
PCR assay demonstrated a sensitivity of 62.5% and a specificity of 96.4%. In contrast, the 
newly developed fluorescent RPA assay exhibited superior performance, with a sensitivity 
of 90.0% and a specificity of 91.1% for detecting N. americanus infection. These findings 
highlight the potential of fluorescent RPA as a more sensitive method for identifying N. 
americanus. Moreover, our research suggests that the established fluorescent RPA could 
play a crucial role in various applications, such as surveillance and epidemiological and 
clinical investigations related to N. americanus. Further studies are warranted to explore 
its full potential and optimize its implementation in practical settings. This advancement 
represents a significant step forward in the field of diagnostic techniques for parasitic 
infections.

1.  Introduction
Necator americanus, a parasitic nematode found in the human small intestine, is one of the 
primary hookworm species, along with Ancylostoma spp [1]. This species is predominant and 
exhibits a particularly high prevalence in regions including southern China, Southeast Asia, 
the Americas, and much of Africa [2]. Adult worms reproduce and lay eggs in the duodenum, 
while their larvae can penetrate human skin, undergo several molts, and eventually mature 
into adult worms, a process that may lead to disease development, such as blood-feeding in 
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the gastrointestinal tract, causing hemorrhaging and contributing to iron deficiency anemia 
(IDA) [2,3]. The impact of N. americanus on human health is significant, especially in areas 
with poor sanitation, where the transmission cycle is more easily sustained [1]. Addressing 
this parasitic infection requires a thorough understanding of the hookworm’s biology and 
behavior, along with advancements in diagnostic methods to enable early detection and miti-
gate its impact on affected populations.

Understanding the unique characteristics of hookworm species, particularly N. ameri-
canus, emphasizes the need for precise detection methods with high sensitivity and specificity 
to develop effective control strategies [2,4–6]. Individuals with N. americanus often have 
low worm burdens, making conventional diagnostic assays prone to under-detection [7–9]. 
Additionally, the co-endemicity of N. americanus with Ancylostoma spp in certain regions 
complicates diagnostic specificity, potentially leading to misclassification or overlooking 
specific hookworm species [10–12]. These factors highlight the importance of improving assay 
sensitivity and specificity to reduce the risk of misdiagnosis.

Recent advancements in molecular diagnostics, such as quantitative real-time multiplex 
PCR and isothermal loop amplification (LAMP), have significantly enhanced the detec-
tion of parasitic infections, exemplified by studies identifying intestinal parasites in various 
populations and addressing the limitations of conventional methods [13–15]. Recombinase 
Polymerase Amplification (RPA) is an isothermal DNA amplification technique that utilizes 
portable instrumentation and lyophilized reagents, enabling rapid reactions at 37–42°C and 
minimal resource requirements [16]. Detection of amplified DNA is feasible via gel electro-
phoresis, fluorescence analysis, or oligochromatographic lateral flow (LF) strips, making RPA 
technology an ideal choice for field deployment [17–19]. Fluorescent RPA with probe technol-
ogy enhances sensitivity and specificity compared to conventional PCR [20,21]. Its compat-
ibility with portable devices (e.g., Genie III, Twista) makes it well-suited for rapid on-site 
testing in low-resource settings [22–26].

This study aims to establish a rapid detection method for detecting N. americanus in fecal 
samples using the fluorescent RPA. This endeavor seeks to provide technical support for the 
monitoring and early warning of N. americanus infections.

2.  Methods

2.1.  Ethics statement
The animal experiments were approved by the Animal Welfare and Ethics Committee of the 
National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention 
(Permit No: IPD-2019–6).

This study was approved by the Medical Ethics Committee of the Institute of Parasitic 
Disease Prevention and Control of the Chinese Center for Disease Control and Prevention 
(National Tropical Disease Research Center) (ethical approval number 2021019). Sam-
ples were collected after obtaining the informed verbal consent from the subjects or their 
families.

2.2.  Sample collection
2.2.1.   Parasites.  The Institute of Parasitic Disease Prevention and Control of the Chinese 

Center for Disease Control and Prevention (National Center for Tropical Disease Research) 
provided the larvae of Clonorchis sinensis, Schistosoma japonicum, Fasciola hepatica, Ascaris 
lumbricoides, Enterobius vermicularis and Ancylostoma duodenale. Hamsters’ fecal samples 
were collected from an established animal model of hamsters infected with N. americanus, 
and the mice were obtained from the same institution.
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2.2.2.   Human fecal sample collection.  Forty-one human fecal samples, collected 
from Zhejiang and Hainan Provinces between 2020 and 2021, were tested using Kato-
Katz conducted immediately after collection, stored in 75% ethanol at 4°C for nucleic acid 
extraction, and later used to evaluate and compare the sensitivity and specificity of the 
fluorescent RPA. Laboratory staff provided 40 healthy human fecal samples, each one was 
artificially spiked with either 1 or 3 eggs of N. americanus. In addition, a total of 287 human 
fecal samples were collected from field sites in Hainan and Zhejiang Provinces in 2022 for 
examination. These included 273 samples from Baoting Li and Miao Autonomous County, 
Changjiang Li Autonomous County, and Tanniu Town of Wenchang City in Hainan Province, 
along with 14 samples from Linhai City and Ninghai County in Zhejiang Province. Following 
microscopic examination using the Kato-Katz, all human fecal samples were immersed in 75% 
alcohol and stored at 4°C for nucleic acid extraction.

2.3.   Preparation of human fecal samples with different N. americanus egg 
density
To assess the feasibility of the developed method for detecting samples with low infection 
intensity, N. americanus eggs were isolated from the feces of infected hamsters through 
flotation in saturated saline. The clarified supernatants containing N. americanus eggs were 
pooled, and egg counts were conducted under low magnification, yielding a concentration of 
5 eggs per 10 µL. Low concentrations of N. americanus eggs (i.e., 5 or 15 eggs per gram [EPG]) 
were then spiked into 200 mg aliquots of human STH-negative feces, and the procedure was 
repeated 20 times. Following this, all prepared fecal samples were immersed in 75% alcohol 
and stored at 4°C for nucleic acid extraction.

2.4.  DNA extraction
Genomic DNA were directly extracted from the larvae of the parasite as C. sinensis, S. japon-
icum, F. hepatica, A. lumbricoides, E. vermicularis, N. americanus and A. duodenale larvae 
using the Tissue and Blood Kit (QIAGEN, Germany), with 25 mg of tissue and 200 µL of 
elution buffer. Forty fecal samples containing varying numbers of N. americanus eggs pre-
pared in the laboratory, alongside 41 samples for laboratory validation and 287 samples for 
field validation, were thoroughly mixed, and 200 mg samples were then taken using a three-
point sampling method from three distinct locations: the surface, center, and periphery, to 
ensure that different areas of the feces were well-represented. Samples were processed using a 
Bertin Precellys 24 (Bertin Technologies, France) with centrifuge tubes containing steel beads 
to mechanically disrupt the fragile eggshell layer. The samples were homogenized at 6500 rpm 
for 20 seconds, repeated twice, for a total of three cycles. The subsequent steps followed the 
QIAamp Fast DNA Stool Mini Kit (QIAGEN, Germany) protocol, utilizing 200 mg of stool 
and 200 µL of elution buffer. Extracted DNA was stored at -20°C for further analysis., facili-
tating genomic DNA extraction. The subsequent steps followed the QIAamp Fast DNA Stool 
Mini Kit (QIAGEN, Germany) protocol, utilizing 200 mg of stool and 200 µL of elution buffer. 
Extracted DNA was stored at -20°C for further analysis.

2.5.  The fluorescent RPA assay
2.5.1.   Design and screen of primers and probes.  In this study, the ITS2 region 

(GenBank accession no. LC036565.1) of N. americanus was chosen as the target gene. 
According to the manuals of the TwistAmp exo kits (TwistDx, Cambridge, UK), fluorescent 
RPA oligonucleotides were custom-tailored to target the N. americanus gene segment. Due 
to the extended length of fluorescent RPA primers and probes, it was imperative to mitigate 
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non-specific amplification, such as primer-primer and primer-probe interactions. For this 
reason, primer pairs were initially aligned and combined, resulting in a total of 9 primer 
combinations selected through a random combination approach. Subsequently, a negative 
control was performed using sterile water to exclude primer pairs that yielded non-specific 
fluorescence signals. Primer pairs devoid of non-specific fluorescence amplification advanced 
to subsequent rounds of screening. The optimal primer pair targeting the specified sequence 
was determined through fluorescence amplification using N. americanus genomic DNA 
as a template. Fluorescence signal reactions and readings were conducted using CFX96 
fluorescence quantitative PCR instrument (Bio-Rad, the USA). Selection criteria were based 
on the intensity of Relative Fluorescence Units (RFU) and the number of cycles in which 
fluorescence occurs. The details of these primer pairs, along with the fluorescent probe (P), are 
summarized in Table 1. The positions of the six primers designed for the fluorescent RPA are 
shown in Fig 1.

2.5.2.   RPA reaction system.  RPA reactions were performed using the TwistAmp exo 
kit (TwistDx, Cambridge, UK) in 50 µL of reaction systems, utilizing CFX96 fluorescence 
quantitative PCR instrument (Bio-Rad, the USA). Each reaction contained 25 µL of buffer, 
2.1 µL of each forward and reverse primer (10 µM), 0.6 µL of probe (10 µM), 2 µL of template 
genomic DNA, and 15.2 µL of distilled water (ddH2O), which were added to the lyophilized 
RPA pellet. Subsequently, 3 µL of magnesium acetate (280 mmol/L) was added to the lid of the 
pellet. The reaction was initiated by centrifugation of the pellet, followed by reaction of the 
tubes at 39°C for 20 minutes.

2.5.3.   Sensitivity and specificity of RPA assays.  To assess the sensitivity and specificity 
of the RPA assays with optimal primers and probe. Genomic DNA from N. americanus worms 
were serially diluted to concentrations of 100 pg/µL, 10 pg/µL, 1 pg/µL, 100 fg/µL, 10 fg/µL, 
1 fg/µL, and 0.1 fg/µL to serve as amplification templates. The experiment was conducted 
in triplicate. Fluorescent RPA was then conducted using the optimal primer pairs identified 
to determine the lowest detection limit of the method. Furthermore, 40 artificially prepared 
fecal samples (including 20 samples containing a single N. americanus egg and 20 samples 
containing three N. americanus eggs, i.e., 5 or 15 eggs per gram [EPG]) were further tested for 
sensitivity using semi-nested PCR and fluorescent RPA.

Table 1.  Primers and probe sequences for the ITS2 of N. americanus and A. duodenale.

Primers and 
probe

Methodology Sequence Reference

F1 Fluorescent RPA CTACAGTGTAGCTTGTGGACAGTACTCTCACCG In this study
F2 Fluorescent RPA CTGTTTGTCGAACGGTACTTGCTCTGTACTACG In this study
F3 Fluorescent RPA TCAGCAATTCCCGTTTAAGTGAAGAACACA In this study
R1 Fluorescent RPA CACATCCACATGGCGAACATCGTTGTCCTTCAC In this study
R2 Fluorescent RPA CTCCGTTCAACCACGCTCATAAGTCGCGAGA In this study
R3 Fluorescent RPA CGATTAAACAGTGAACAACGATATGTTCATGTC In this study
P Fluorescent RPA CTGTTATTCACTACGTTAGTTRGCTAGTT/i6FAMdT//

idSp/C/iBHQdT/AACGTATGATAGCG-C3 Spacer
In this study

NC1 Semi-nested PCR ACGTCTGGTTCAGGGTTGTT [27–29]
NC2 Semi-nested PCR TTAGTTTCTTTTCCTCCGCT [27–29]
NA Semi-nested PCR ATGTGCACGTTATTCACT [27–29]
AD Semi-nested PCR CGACTTTAGAACGTTGC [29]

https://doi.org/10.1371/journal.pntd.0013007.t001

https://doi.org/10.1371/journal.pntd.0013007.t001
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Additionally, genomic DNA samples from C. sinensis, S. japonicum, F. hepatica, A. lum-
bricoides, E. vermicularis and A. duodenale were utilized as templates for fluorescent RPA to 
assess the presence of cross-reactivity.

A genomic DNA template of N. americanus at a concentration of 10 fg/µL was employed as 
the positive control. Distilled water was employed as the negative control. A no template con-
trol (NTC) is equivalent to blank control. The shape of the amplification curves was used to 
assess whether a sample is positive or negative. Specifically, if the amplification curve follows 
the ‘S’-shaped trend, it is determined as positive [24]. Conversely, if the trend resembles that 
of the negative control, it is judged as negative. The experiments were conducted in triplicate 
to ensure the reliability and reproducibility of the results.

2.6.   Kato-Katz
The Kato-Katz was employed as the “gold standard” to evaluate and compare the sensitivity 
and specificity of both the semi-nested PCR and fluorescent RPA. All samples underwent 
Kato-Katz testing. The Kato-Katz assay was conducted according to the manufacturer’s 
instructions using a detection kit (Yiman Biotechnology Co., Ltd, China). This involved 
preparing Kato tablets with nylon gauze, scrapings, slides, and so on, followed by microscopic 
examination of the smears under 10x magnification and double fecal testing to detect N. 
americanus eggs. The slides were processed in batches, with the interval between preparation 
and examination not exceeding one hour. If eggs were detected, the result was considered pos-
itive, and the average number of eggs in two Kato-Katz discs was calculated. If no eggs were 
detected, the result was considered negative.

Fig 1.  The positions of the primers designed in this study.

https://doi.org/10.1371/journal.pntd.0013007.g001

https://doi.org/10.1371/journal.pntd.0013007.g001
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2.7.  Semi-nested PCR
To benchmark against the established fluorescent RPA, semi-nested PCR was chosen for the 
assay. All samples were subjected to semi-nested PCR. The semi-nested PCR primers were 
synthesized based on the literature [27] and the primer sequences are listed in Table 1. The 
reaction was performed in a total volume of 25 µL solution consisting of 12.5 µL of 2×PCR 
mix (TAKARA, 320A, Japan), 1 µL of forward primer (10 µM), 1 µL of reverse primer (10 
µM), 1 µL of extracted DNA from fecal samples, and 9.5 µL of ddH2O. All PCR reactions were 
conducted using T100 Thermal Cycler (Bio-Rad, the USA). For N. americanus and A. duode-
nale, the reaction conditions were identical, with both utilizing NC1 and NC2 as the forward 
and reverse primers, respectively, and the protocol of the first reaction round was as follows: 
initial denaturation at 94°C for 5 minutes, followed by 25 cycles consisting of denaturation at 
94°C for 30 seconds, annealing at 55°C for 30 seconds, and extension at 72°C for 30 seconds, 
concluding with a final extension step at 72°C for 5 minutes [27–29]. The second round of 
PCR reactions for N. americanus was carried out using NA and NC2 as forward and reverse 
primers, respectively [27,28], the product length of nested PCR was 230 bp. The reaction pro-
cedure was as follows: initial denaturation at 94°C for 5 minutes, followed by 35 cycles consist-
ing of denaturation at 94°C for 30 seconds, annealing at 55°C for 30 seconds, and extension 
at 72°C for 30 seconds, concluding with a final extension step at 72°C for 5 minutes. As for A. 
duodenale, the second round of PCR reactions employed AD and NC2 as forward and reverse 
primers, the length of the amplified fragment is 130 bp. The cycling was following conditions: 
initial denaturation at 94°C for 5 minutes, followed by 35 cycles consisting of denaturation at 
94°C for 60 seconds, annealing at 55°C for 60 seconds, and extension at 72°C for 60 seconds, 
concluding with a final extension step at 72°C for 5 minutes [29] The PCR products were 
verified by 2% agarose gel electrophoresis and Sanger sequencing (Beijing Liuhe Huada Gene 
Technology Co). The sequences were compared with similar sequences retrieved from the 
GenBank database using BLASTn (http://www.ncbi.nlm.nih.gov/BLAST/).

2.8.  Data statistical analysis
A total of 41 human fecal samples were analyzed using Kato-Katz, semi-nested PCR, and the 
established fluorescent RPA for sensitivity and specificity validation, while 287 field samples 
were tested using the same methods. Fisher’s exact probability test, along with the calculation 
of detection specificity, sensitivity, PPV, and NPV, was performed using SAS 9.4.

3.  Results

3.1.  The primers and probe for fluorescent RPA
The ITS2 upper and lower primers were aligned and paired, and ddH2O was utilized as neg-
ative control to eliminate primer combinations potentially causing non-specific fluorescence 
amplification. As shown in Table 1, 3 forward primers, 3 reverse primers and 1 probe were 
designed. Thus, there were 9 types of primer combinations, i.e., F1-R1 (1), F1-R2 (2), F1-R3 
(3), F2-R1 (4), F2-R2 (5), F2-R3 (6), F3-R1 (7), F3-R2 (8), and F3-R3 (9).

Fig 2a shows the interferences between these primer combinations and the probe. The 
x-axis represents cycles, while the y-axis represents relative fluorescence units (RFU). Briefly, 
primer combinations labelled 2, 3, 5, and 6 exhibited no fluorescent amplification in the pres-
ence of no templates, suggesting non-coupling of the primers with the probe. Thus, these four 
different primer combinations (2, 3, 5 and 6) were further used for fluorescent amplification 
of the genomic DNA of N. americanus eggs. As shown in Fig 2b, the four primer combina-
tions exhibited similar peak times. Particularly, the primer combination No. 3 (F1-R3) showed 

http://www.ncbi.nlm.nih.gov/BLAST/
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the most significant change in fluorescence intensity and the amplification length of this 
primer pair was 237 bp. Therefore, this primer combination was selected as the final forward 
and reverse primer for this method (Fig 2).

3.2.  Laboratory evaluation of the fluorescent RPA
3.2.1.   Analytical sensitivity and specificity of RPA assays.  Using the optimal primer 

combination 3 (F1-R3), N. americanus genomic DNA samples with pre-set concentrations 
of 100 pg/µL, 10 pg/µL, 1 pg/µL, 100 fg/µL, 10 fg/µL, 1 fg/µL, or 0.1 fg/µL were detected via 
the RPA assay to assess the analytical sensitivity of this method. As shown in Fig 3, significant 
fluorescence curves were observed when the concentration of N. americanus genomic DNA 
samples were ≥1 fg/µL. Conversely, when the concentration of N. americanus genomic 
DNA samples were ≤0.1 fg/µL, the amplification curve resembled that of the NTC, with no 
detectable fluorescence amplification. Therefore, the method’s minimum detection limit was 
established as 1 fg/µL.

To further detect the specificity of the RPA assay, N. americanus genomic DNA samples 
as well as the genomic DNA samples of C. sinensis, S. japonicum, F. hepatica, A. lumbricoides, 
E. vermicularis and A. duodenale were further tested via the RPA assay with the same opti-
mal primer combination. As shown in Fig 4, the positive control (N. americanus genomic 
DNA) successfully generated an ‘S’-shaped trend fluorescence curve, indicating amplification. 
Besides, the genomic DNA fluorescence amplification curves of C. sinensis, S. japonicum, F. 
hepatica, A. lumbricoides, E. vermicularis and A. duodenale overlapped with those of the nega-
tive control and the NTC, showing no fluorescence amplification. This observation indicates a 
high degree of specificity in the well-established fluorescent RPA response of N. americanus.

3.2.2.   Detection of fecal samples containing varying quantities of N. americanus 
eggs.  DNA extracted from 40 artificially prepared fecal samples, including 20 samples 
containing one egg of N. americanus and 20 samples containing three eggs of N. americanus, 
and the positive control, negative control as well as NTC, were detected using both semi-
nested PCR and fluorescent RPA. The genomic DNA fluorescence amplification curves of N. 
americanus in these samples detected via fluorescent RPA and semi-nested PCR are shown 
in Fig 5. Meanwhile, the detection data for the samples containing one egg and the samples 
containing 3 eggs are summarized in Tables 2 and 3, respectively. As shown in Table 2, Fig 5a 
and S1a Fig, out of the 20 samples containing one egg, 12 samples (detection rate: 60%) were 

Fig 2.  Results of primers and probe screening for ITS2 gene. (a) Primer-probe interference experiments. (b) Optimization results of the primer combinations for 
detecting N. americanus eggs.

https://doi.org/10.1371/journal.pntd.0013007.g002

https://doi.org/10.1371/journal.pntd.0013007.g002
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identified as N. americanus positive and 8 samples were negative by semi-nested PCR, while 
19 samples (detection rate: 95%) were detected as positive by fluorescent RPA. For samples 
containing three eggs, semi-nested PCR identified 19 samples as N. americanus positive and 
1 sample as negative, resulting in a detection rate of 95% (19/20). Moreover, all 20 samples 
analyzed using fluorescent RPA displayed fluorescence amplification curves that met the 
positivity criteria, resulting in a detection rate of 100% (20/20) (Fig 5b, S1b Fig and Table 3).

3.2.3.   Detection of the 41 fecal samples with different methods.  A total of 41 samples, 
of which 30 were Kato-Katz positive and 11 were Kato-Katz negative, were tested using semi-
nested PCR and fluorescence RPA to evaluate the sensitivity and specificity of fluorescence 
RPA. The raw data of detections are recorded in Table 4, the amplification curves are shown 
in Fig 6, and the analysis data are shown in Table 5. Table 4 shows the sample number, and the 

Fig 3.  Determination of the minimum ITS2 detection limit of the RPA assay using the optimal primer combination. Curves 1- 7 
shows the amplification fluorescence curves of N. americanus genomic DNA samples with pre-set concentrations of 100 pg/µL, 10 pg/
µL, 1 pg/µL, 100 fg/µL, 10 fg/µL, 1 fg/µL, and 0.1 fg/µL, respectively. NTC: No template control.

https://doi.org/10.1371/journal.pntd.0013007.g003

Fig 4.  Cross reaction test of fluorescence RPA (a) Cross reaction test with C. sinensis, S. japonicum, F. hepatica, A. lumbricoides, E. vermicularis (Line 1-5: 
Genomic DNA of C. sinensis, S. japonicum, F. hepatica, A. lumbricoides and E. vermicularis; PC: Positive control; NC: Negative control; NTC: No template con-
trol) (b) Cross reaction test with A. duodenale (Line6: Genomic DNA of A. duodenale; PC: Positive control; NC: Negative control; NTC: No template control).

https://doi.org/10.1371/journal.pntd.0013007.g004

https://doi.org/10.1371/journal.pntd.0013007.g003
https://doi.org/10.1371/journal.pntd.0013007.g004
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detection results of these samples via the three methods. Fig 6 and S2 Fig presents the results 
of the fluorescent RPA assay and semi-nested PCR.

Taken together, Kato-Katz identified 30 samples as N. americanus positive and 11 sam-
ples as negative. In the semi-nested PCR analysis, a target band of 250 bp was identified in 
29 samples, which were confirmed to be homologous to the N. americanus through Sanger 
sequencing and comparison with the NCBI database. Twelve samples showing no target 
band were classified as negative (S2 Fig). In fluorescence RPA assay, 30 samples exhibited a 
robust beta-fluorescence curve within 20 minutes (Fig 6). The remaining 4 samples showed 
fluorescence amplification, but they did not follow the ‘S’-shaped trend amplification curve 
[24] of fluorescent RPA as the positive control, thus classified as negative [17]. The other 7 
samples did not exhibit fluorescence amplification and were therefore classified as negative. 
Based on these data, the sensitivity and specificity of semi-nested PCR compared to Kato-Katz 
were 96.7% (29/30) and 100% (11/11), respectively. Similarly, the sensitivity and specificity 
of fluorescent RPA compared to Kato-Katz were both 100% (30/30 for sensitivity and 11/11 
for specificity) (Table 5). And the fluorescent RPA demonstrated 100% (29/29) sensitivity and 
91.7% (11/12) specificity when compared to the semi-nested PCR.

Fig 5.  Detection results of fecal samples containing varying quantities of N. americanus eggs. (a) Detection results of fecal samples containing 1 egg by fluorescent 
RPA. (b) Detection results of fecal samples containing 3 eggs by fluorescent RPA.

https://doi.org/10.1371/journal.pntd.0013007.g005

Table 2.  Detection results of semi-nested PCR and fluorescence RPA assay for 20 samples each containing one 
egg of N. americanus.

Fluorescence RPA Semi-nested PCR Total
+ −

+ 12 7 19
− 0 1 1
Total 12 8 20

https://doi.org/10.1371/journal.pntd.0013007.t002

Table 3.  Detection results of semi-nested PCR and fluorescence RPA assay for 20 samples each containing three 
egg of N. americanus.

Fluorescence RPA Semi-nested PCR Total
+ −

+ 19 1 20
− 0 0 0
Total 19 1 20

https://doi.org/10.1371/journal.pntd.0013007.t003

https://doi.org/10.1371/journal.pntd.0013007.g005
https://doi.org/10.1371/journal.pntd.0013007.t002
https://doi.org/10.1371/journal.pntd.0013007.t003
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3.3.   Detection of the fecal samples collected from field sites
In the analysis of the 287 samples, 40 were identified as positive for N. americanus using 
the Kato-Katz, 58 tested positive for N. americanus through fluorescent RPA (Fig 7), and 34 
samples were confirmed positive for N. americanus via semi-nested PCR (S3 Fig). PCR testing 

Table 4.  Raw data of detection results of 41 samples using Kato-Katz, semi-nested PCR and fluorescent RPA.

Samples Kato-Katz (average egg number) Semi-nested PCR Fluorescence RPA
1 0 − −
2 0 − −
3 0 − −
4 0 − −
5 0 − −
6 0 − −
7 26 + +
8 150 + +
9 2.5 + +
10 1 − +
11 1 + +
12 6 + +
13 3 + +
14 3 + +
15 6.5 + +
16 2 + +
17 65 + +
18 6 + +
19 15 + +
20 290 + +
21 35 + +
22 1 + +
23 0 − −
24 231 + +
25 3 + +
26 43 + +
27 2 + +
28 2 + +
29 0 − −
30 0 − −
31 4 + +
32 4 + +
33 23 + +
34 44 + +
35 2 + +
36 14 + +
37 0 − −
38 2 + +
39 17 + +
40 0 − −
41 7 + +

https://doi.org/10.1371/journal.pntd.0013007.t004

https://doi.org/10.1371/journal.pntd.0013007.t004
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for A. duodenale was performed on 62 samples that tested positive for N. americanus, and all 
results were negative for A. duodenale (S4 Fig).

Among the 62 samples that tested positive for N. americanus, 25 samples were positive by 
all three methods, 11 were positive by both Kato-Katz and fluorescent RPA, 9 were positive by 
both fluorescent RPA and semi-nested PCR, 13 were positive by fluorescent RPA alone, and 4 
were positive by Kato-Katz alone, as shown in Fig 8. Additionally, 4 samples (No. 2, 10, 25, 26) 
were detected exclusively by the Kato-Katz, with egg counts of 1.5, 0.5,1 and 2, respectively, as 
shown in Table 6.

The specificity and sensitivity of the three methods exhibit differences when compared to 
one another (show in Tables 7–9). Out of 287 samples examined by the Kato-Katz, 13.94% 
(40/287) tested positive for N. americanus. These samples underwent subsequent testing with 
fluorescent RPA and semi-nested PCR assays. The results indicated that 20.21% (58/287) 
samples tested positive for N. americanus via fluorescent RPA. Additionally, 11.85% (34/287) 
samples were identified as positive through semi-nested PCR. And the sensitivity of the fluo-
rescent RPA method compared to the semi-nested PCR method was 100% (34/34), while the 
specificity was 90.5% (229/252).

4.  Discussion
Despite being classified as a neglected tropical disease, the economic and health burden of 
hookworm exceeds published estimates for several diseases that have received comparatively 
more attention, such as rotavirus. Moreover, some large countries transitioning to higher 
income statuses continue to grapple with significant hookworm burdens [2,30]. RPA oper-
ates effectively within a temperature range of 37–42°C, capable of detecting target DNA even 
at concentrations as low as 1–10 copies and providing results in under 20 minutes [31–34]. 
In this study, we successfully developed a fluorescent RPA assay for the detection of N. 

Fig 6.  Detection results of N. americanus in 41 Human Fecal Samples via Fluorescent RPA method for Sensitivity and Specificity Assessment (Line 1-41: Human 
fecal samples; PC: Positive control; NC: Negative control; NTC: No template control).

https://doi.org/10.1371/journal.pntd.0013007.g006

Table 5.  Laboratory validation of the Kato-Katz for human fecal samples compared with fluorescent RPA and semi-nested PCR assays.

Kato-Katz Fluorescence RPA Semi-nested PCR
+ − Total + − Total

+ 30 0 30 29 1 30
− 0 11 11 0 11 11
Total 30 11 41 29 12 41

https://doi.org/10.1371/journal.pntd.0013007.t005

https://doi.org/10.1371/journal.pntd.0013007.g006
https://doi.org/10.1371/journal.pntd.0013007.t005
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americanus, based on the ITS2 gene to generate an ‘S’-shaped trend amplification curve as the 
criterion for a positive result. The analysis included PC, NTC, and NC, with negative sam-
ples showing trends similar to those of the NC and NTC, demonstrating high sensitivity and 
specificity. This assay offers significant advantages in addressing the current N. americanus 
epidemic and markedly improves the efficiency of detecting N. americanus eggs in fecal sam-
ples. The effective diagnostic sensitivity of this test is demonstrated at 1 fg/µL.

Fig 7.  Detection results of N. americanus in 287 human fecal samples collected from the field via Fluorescent RPA (Line 1-287: Human fecal samples from the 
field; PC: Positive control; NC: Negative control; NTC: No template control).

https://doi.org/10.1371/journal.pntd.0013007.g007

https://doi.org/10.1371/journal.pntd.0013007.g007
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Worm egg detection through fecal egg counting techniques represents a pivotal methodol-
ogy for assessing parasite burden, resistance profiles, and diagnosing diseases across diverse 
animal species [35,36]. In this study, we found no statistically significant difference in the 
detection rate between semi-nested PCR and fluorescent RPA for fecal samples containing 
three eggs (P>0.05). However, fluorescent RPA demonstrated higher detection efficacy than 
semi-nested PCR for fecal samples containing a single egg (P=0.02<0.05). These results sug-
gest that while semi-nested PCR is effective for detecting samples with low levels of infection 
(EPG=15 in this study) [37], fluorescent RPA shows superior sensitivity at very low levels of 
infection (EPG=5 in this study). Over the past 15 years, the rapid development of RPA has 
been driven by its short response time and high sensitivity [38]. As noted by Frimpong et al. 
[39] and Lee et al. [33]. Compared to PCR, RPA enables isothermal amplification at 37°C to 
42°C, which reduces reaction times and simplifies equipment requirements, making it more 
suitable for field applications. Current molecular diagnostic techniques for N. americanus 
include semi-nested PCR, qPCR, and others [12,14,25,28,29].

In this study, although both fluorescent RPA and qPCR are based on fluorescent molecular 
detection methods and they are more directly comparable compared to semi-nested PCR, we 
selected semi-nested PCR due to its sufficient sensitivity to meet the requirements of the study 
[40–43]. This choice was made based on its established reliability and extensive validation, as 
well as its demonstrated effectiveness in detecting positives in the 3-egg experiment. Fur-
thermore, after conducting a comprehensive literature review, we found that the semi-nested 
PCR method has consistently shown effective performance in numerous studies, making it a 
reliable benchmark for our work [28,29,44].

When different methods were used to detect the 287 human fecal samples collected from 
different field sites, with Kato-Katz as the benchmark, the sensitivity rates of fluorescent RPA 
and semi-nested PCR were 90.0% (95% CI: 86.5% to 93.5%) and 62.5%, respectively, while 
the specificity of fluorescent RPA and semi-nested PCR stood at 91.1% (95% CI: 87.8% to 

Fig 8.  Venn diagram of the positive results of the three assays.

https://doi.org/10.1371/journal.pntd.0013007.g008

https://doi.org/10.1371/journal.pntd.0013007.g008
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94.4%) and 96.4%. The positive predictive value (PPV) of the fluorescence RPA assay was 
62.1% (95% CI: 48.4% to 74.5%), and the negative predictive value (NPV) was 98.3% (95% CI: 
95.6% to 99.5%). The sensitivity of the fluorescent RPA method compared to the semi-nested 
PCR method was 100% (34/34, 95% CI:100%), while the specificity was 90.5% (229/252, 95% 

Table 6.  Number of eggs in the 40 positive fecal samples detected by the Kato-Katz and the detection results of 
semi-nested PCR and fluorescent RPA on these samples.

Number Kato-Katz (average egg number) Semi-nested PCR Fluorescence RPA
1 27 + +
2 1.5 − −
3 2.5 + +
4 3.5 + +
5 3 + +
6 2 + +
7 41 + +
8 81 + +
9 8 + +
10 0.5 − −
11 3 + +
12 8 + +
13 485 + +
14 40 + +
15 480 + +
16 7 + +
17 43 + +
18 4 + +
19 2 + +
20 2 − +
21 8 + +
22 8 + +
23 5 − +
24 1 − +
25 1 − −
26 2 − −
27 1 − +
28 5 − +
29 1 − +
30 9 + +
31 5 + +
32 1 − +
33 1 − +
34 1 − +
35 3 − +
36 4 + +
37 7 + +
38 2 − +
39 5 + +
40 6 + +

https://doi.org/10.1371/journal.pntd.0013007.t006

https://doi.org/10.1371/journal.pntd.0013007.t006
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CI:87.1% to 93.9%). The discrepancy between Kato-Katz negative results and semi-nested 
PCR and fluorescent RPA negative results, as well as between Kato-Katz positive results and 
semi-nested PCR and fluorescent RPA positive results could be due to factors such as the 
lower sensitivity of the Kato-Katz, failure to detect eggs promptly after slide preparation, or 
egg degradation [45,46]. We observed that out of 287 samples, of 58 positive samples detected 
by fluorescent RPA, 13 samples were tested positive exclusively through fluorescent RPA, pos-
sibly due to the fact that RPA has a higher limit of detection than semi-nested PCR [28].

Among the 273 samples from Hainan, 46 were found to be positive using the fluorescent 
RPA. Of these, 13 were positive in both the Kato-Katz and semi-nested PCR, 11 were positive 
by Kato-Katz, and 9 were positive by semi-nested PCR, indicating a higher sensitivity of the 
molecular detection methods[25,32,36,37]. The results of China’s National Soilborne Nema-
tode Infection Monitoring in 2019 showed that the hookworm infection rate in Hainan Prov-
ince was 2.68% [47]. However, the infection rate of N. americanus in this study was higher 
than this value, suggesting that the actual infection rate of N. americanus in Hainan Province 
may have been previously underestimated. Nonetheless, molecular detection methods also 
have some limitations, which can arise from various factors. For example, in the four sam-
ples (No. 2, 10, 25, 26) tested with the Kato-Katz method, the egg counts were 1.5, 1, 2, and 
0.5 respectively, while the molecular test results were negative. Although fecal samples were 
homogenized before DNA extraction, this discrepancy suggests a potential sampling error, 
possibly resulting from very low infection levels and the non-homogeneous distribution of 
eggs in the feces, which may have led to the selection of samples containing no eggs for DNA 
extraction [48–50]. Nevertheless, out of a total of 287 samples, the molecular assay identified 
22 samples as positive, whereas the Kato-Katz returned negative results for these samples, 
suggesting that the molecular assay generally exhibits higher sensitivity than the Kato-Katz 
[19,36,37,51].

Table 7.  Comparison of the Kato-Katz with semi-nested PCR for detecting human fecal samples.

Kato-Katz Semi-nested PCR Total
+ −

+ 25 15 40
− 9 238 247
Total 34 253 287

https://doi.org/10.1371/journal.pntd.0013007.t007

Table 8.  Comparison of the Kato-Katz with fluorescent RPA for detecting human fecal samples.

Kato-Katz Fluorescence RPA Total
+ −

+ 36 4 40
− 22 225 247
Total 58 229 287

https://doi.org/10.1371/journal.pntd.0013007.t008

Table 9.  Comparison of the fluorescent RPA with Semi-nested PCR for detecting human fecal.

Fluorescence RPA Semi-nested PCR Total
+ −

+ 34 24 58
− 0 229 229
Total 34 253 287

https://doi.org/10.1371/journal.pntd.0013007.t009

https://doi.org/10.1371/journal.pntd.0013007.t007
https://doi.org/10.1371/journal.pntd.0013007.t008
https://doi.org/10.1371/journal.pntd.0013007.t009
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The fluorescent RPA assay developed in this study can deliver timely results, enhancing 
its feasibility for real-world applications, particularly in resource-limited settings where rapid 
diagnostics are crucial. The capability of RPA to detect target DNA at very low concentrations 
makes it an invaluable tool for early detection and intervention, which are essential for con-
trolling the spread of N. americanus and mitigating its impact on public health. The adoption 
of this fluorescence RPA in diagnostic protocols can improve the accuracy of hookworm 
infection surveillance and contribute to more effective disease management and control strat-
egies, particularly in endemic regions. Additionally, the T8 Isothermal Diagnostics Instrument 
(Axxin, Victoria, Australia) can be utilized to visualize the final results of fluorescent RPA in 
field settings. Therefore, it holds significant potential as a detection tool in public health for 
primary care and screening, enhancing the efficiency and accuracy of N. americanus detec-
tion. In scientific research, it can serve as a valuable tool for studying the epidemiological 
characteristics of N. americanus disease and evaluating drug efficacy.

Numerous constraints were identified due to the investigative nature of this study. Firstly, 
variations in molecular assay results may be attributed to differences in sampling hotspot, 
underscoring the necessity for continued vigilance to ensure the reliability and consistency of 
molecular analyses. Secondly, the methods of DNA extraction are of paramount importance 
in any molecular method, as they directly impact the performance of RPA and its field appli-
cation. Simplifying DNA extraction procedures and ensuring their quality present significant 
challenges that require attention.

5.  Conclusion
In summary, the rapid detection method for N. americanus based on fluorescent RPA technol-
ogy established in this study offers significant advantages and shows broad application pros-
pects. It is characterized by high sensitivity, high specificity, and a rapid operation procedure, 
making it highly practical for large-scale detection and use in primary healthcare institutions. 
This method has wide application potential and great development prospects in the field of N. 
americanus disease control and research.
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