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Methods: Nationwide data on 9061 JE cases, mosquito abundance from 89 surveillance sites, and population
movement between 337 cities during 2013-19 were obtained. Seasonal multivariate linear regression
L models including time trends and reconciliation terms representing annual and semiannual cycles were

Japanese encephalitis . X . X X
Mosquito-borne disease fitted to the weekly time series of JE cases, and the amplitude and peak time of the cycles were estimated. A
Population movement metapopulation network model of inter-city population mobility coupled with an iterative Bayesian in-
Transmission dynamics ference algorithm was established to simulate the epidemic dynamics of JEV and estimate the time-varying
transmission parameters.
Results: The timing of the annual peak of JEV epidemics varied with latitude (p-value < 0.05), mainly
characterized by earlier in southern cities and later in northern cities. There was no significant difference in
the annual amplitude fluctuations of JEV epidemics in different latitudes (p-value > 0.05). Regions with
higher values of effective reproduction number R were mainly concentrated in central China, including
Sichuan, Chongqing and Shaanxi provinces, with the annual activity peak typically occurring around August.
Infections caused by population mobility mainly occurred in hub cities with high connectivity and radiated
to surrounding cities.
Conclusions: Findings from this nationwide study can help enhance situational awareness of the spread of
JE and inform appropriate intervention strategies to advance the goal of JE elimination.
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humans.! Approximately 3 billion people are exposed to the risk of
JEV infection in the world, and nearly 67,900 JE cases occur each
year, resulting in 709,000 disability-adjusted life years annually.”>
Severe cases of JE generally have a poor prognosis, with one-third of
infected people having neurological sequelae and one-third dying
from the infection.” JE impairs the quality of life for patients and
their families, placing a significant burden on global public health
and the healthcare economy. In China, thousands of cases of JE are
reported each year, with China accounting for 15.27% to 56.26% of all
JE cases reported to the World Health Organization (WHO) during
the period 2013-2018, displaying a significantly high disease
burden.”

China has experienced sporadic JE outbreaks over the past dec-
ades, with remarkable spatial and temporal heterogeneity in disease
distribution.® Despite widespread implementation of the JE vaccine
and significant improvements in sanitation, the incidence is rising in
China due to global warming and increased diagnostic capacity, as
well as improved reporting awareness.”® JEV continues to spread,
especially in rural and peri-urban regions where environmental and
socio-economic conditions favor its transmission.”"'> The high in-
cidence areas of JE are mainly distributed throughout southwestern
and central China, such as Guizhou, Sichuan, Chongqing, and Henan
provinces, which are greatly affected by climate and population
density.” July to September is the primary epidemic season of JE,
coinciding with the peak of the rainy season and the high incidence
of mosquito activity.”> Although previous studies have described
environmental factors along with the spatiotemporal distribution of
JE and quantified its associated burden in specific regions of China,
these studies relied on small sample sizes of case surveillance data
and were also geographically limited.®'*'” Therefore, they are un-
able to capture the dynamics of transmission that evolve over time
or characterize the burden of JEV transmission across China. At
present, there is a lack of research on the spatio-temporal trans-
mission characteristics and burden of JE in China, and a compre-
hensive evaluation is urgently needed.

For a better understanding of the transmission of JEV and effec-
tively control its future progression, it is essential to quantify the
epidemiological characteristics of these outbreaks across both spa-
tial and temporal scales. Therefore, we conducted a nationwide
study on the epidemiology of JE using surveillance data of JE cases
legally reported from the National Disease Notification and
Surveillance System (NNDSS) covering 337 Chinese cities from 2013
to 2019. We adapted a city-resolved metapopulation network
model'® to simulate the spatio-temporal transmission of JE infection.
This networked metapopulation model can flexibly generate com-
plex population mobility patterns between different regions based
on the observed inter-city population flow. Then, the metapopula-
tion network integrates national surveillance data of JE cases and is
coupled with the ensemble adjustment Kalman filter (EAKF), an
iterative Bayesian inference algorithm, which assimilates weekly
case observations across cities and intercity population move-
ments.'®'? The integration of the Bayesian inference technique fa-
cilitates the calibration of the model to case observations, enabling
the parameters in the model to be updated iteratively, thus reducing
the impact of unreasonable initial parameter setting and model error
discretization.””" At the same time, the method is also able to es-
timate hidden state variables, such as weekly new infections within
a city, and time-varying parameters, such as time-varying trans-
mission rates of the disease.”” Therefore, we developed such a new
method to simulate the evolution of transmission of mosquito-borne
infectious diseases. This study represents the first attempt to com-
prehensively quantify the spatio-temporal transmission dynamics of
JE in China and estimate the epidemiological burden caused by
successive waves of JE epidemics to date.
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Methods
Study domain

This study covered a total of 337 prefecture-level administrative
divisions in China, including 293 prefecture-level cities, 30 autono-
mous prefectures, 7 counties and 3 leagues, and 4 municipalities. In
order to make the analysis of regions consistent and easy to describe,
administrative divisions at the prefecture, municipal and all other
prefecture-level in the analytical framework were collectively re-
ferred to as ‘city’. Therefore, a total of 337 cities (Fig. S1) were finally
included in this study for descriptive analysis and simulation mod-
eling of infectious disease transmission. In addition, these cities
were further dynamically categorized into different city clusters
according to the severity of JE epidemics in different years (Fig. S2
and Supplementary pp 15-17).

JE case surveillance data

All clinically diagnosed, laboratory-confirmed, and suspected
cases of JE reported to the NNDSS of the Chinese Center for Disease
Control and Prevention (China CDC) covering 337 cities from January
1, 2013, to December 31, 2019, were extracted. All cases of JE were
diagnosed according to the diagnostic criteria issued by the Ministry
of Health of the People’s Republic of China (Criteria No. WS
214-2008).>° The definitions of suspected, clinically diagnosed, and
laboratory-confirmed cases of JE can be found in Supplementary pp
5-8. The diagnosis is based on a combination of epidemiological
evidence, clinical presentation and laboratory findings of the patient.
Information on JE cases included basic demographic information
(age, sex, date of birth, national standard code of the individual’s
current residence, etc.), and time information on disease status (date
of disease onset, date of diagnosis, and date of death). Further, the
weekly number of JE cases was aggregated by individual current
residential address to city-level spatial resolution for analysis. Each
week was defined as a 7-day cycle that begins on January 1, resulting
in a total of 52 weeks per year.

Mosquito abundance data and meteorological monitoring data

In this study, there were two types of mosquito abundance data,
which were respectively used to assess the density of mosquito
larvae and adult mosquitoes in each area. The Breteau Index (BI) was
used as a quantitative indicator for assessing Aedes mosquito larval
density.”® Given that the primary vector of JEV is Culex tritae-
niorhynchus, we calculated a weighted BI proposed by previous
studies’*?° to more accurately reflect the true mosquito vector
density. The BI can be calculated by the following formula
Bl = W x (LPC/NH) x 100, where W represents the weight, LPC re-
presents the number of positive containers (with Ae. aegypti pupae
or larvae) inspected, and NH represents the number of households
surveyed. Based on the mosquito abundance data of 89 monitoring
sites across mainland China, BI values of each city were calculated.
The adult Culex tritaeniorhynchus mosquitoes density was mon-
itored using mosquito trapping lamps. In urban areas, monitoring
sites were selected from three types of habitats, including residential
areas, parks, and hospitals. In rural areas, two types of habitats, in-
cluding residential houses and livestock sheds, were chosen. Mon-
itoring was conducted twice per month throughout the entire
annual mosquito population fluctuation cycle. Data on daily tem-
perature (°C) during the period from January 1, 2013, to December
31, 2019, based on 2441 meteorological stations, was obtained from
the China Meteorological Data Sharing System (http://data.cma.cn/).
The ambient temperature data were matched to the respective cities
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based on the geographical location of the stations. The average
temperature for each city was calculated as the average temperature
of meteorological stations within the city.

Population movement data

A metapopulation network model with inter-city population move-
ment as the link was developed in this study to simulate the spatio-
temporal transmission dynamics of JE infection. Initially, we obtained
China’s population movement statistics through the seventh population
census in 2020, which is publicly released by the National Bureau of
Statistics (http://www. stats.gov.cn/). In order to estimate city-level po-
pulation migration data and match population outflows and inflows to
our prefecture-level city administrations, we then obtained the
weighting parameter (i.e., population migration index) representing the
daily inter-city traffic volume from the Gaode Migration Big Data plat-
form (https://trp.autonavi.com/ migrate/page.do). Based on location-
based services (LBS), the Gaode platform collects geographic location
changes from users’ mobile phone positioning and describes the in-
tensity of migration between cities. We further combined the population
movement statistics of the census and the Gaode population migration
index to derive weekly population migration flows between cities.
Therefore, the weekly population migration inflows and outflows of
people between different cities were calculated using the following
formula nap(t) = g4 x ZL1nacp(t, 1)/ Zkeanack(t, i), t = 1: 52. Here,
nap(t, i) is the migration index from city B to city A on week t and p,
denotes the static population inflow for city A according to the census. To
reduce the potential impact of the COVID-19 pandemic on population
migration patterns, we selected the human migration index for the en-
tire year from June 1, 2018, to May 31, 2019, to match each calendar year.
We assumed in the model that population mobility patterns were si-
milar in each calendar year during the study period.

Stratification of urban and rural areas

We defined the main economic and population-dense areas of
each prefecture-level city as urban areas, including 977 municipal
districts, which typically have higher economic and educational le-
vels and higher population density.”® The remaining 1866 counties
in each prefectural city were defined as rural areas, which are gen-
erally larger in area but have lower population density and economic
level. To quantify the seasonal distribution of urban and rural JE
cases across China, we developed a heatmap to describe the weekly
number of JE cases during the entire year. In addition, to examine
changes over consecutive years, a heatmap of the annual number of
JE cases between 2013 and 2019 was also generated. According to
the classification of urban and rural cases, we further used stacked
bar charts to describe cases of different diagnostic categories. The
study also revealed seasonal patterns in total cases, including urban
and rural cases.

Latitudinal gradient characteristics of JE case distribution

Seasonal multiple linear regression models including time trends
and reconciliation terms to represent annual and semiannual cy-
cles'®?7-29 were also fitted to weekly time series of JE cases. Based
on the estimated model coefficients, we extracted the amplitudes
and peak times of the annual and semiannual cycles of the case
count time series. The difference between the maximum and
minimum values of the JE epidemiological curve is measured by the
amplitude. The peak times referrs to the time point when the
number of JE cases is at the highest level. In addition, the periodic
information to describe the temporal spread of the disease con-
sidered in the model was mainly used to explore whether the epi-
demic cycle of JE appeared annually or semiannually.
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Metapopulation network model coupled with Bayesian inference

The existence of cross-protective immunity against each geno-
type of the JEV in the population®’?' is the basic assumption of the
model constructed in this study. It also accounts for the widespread
circulation of the five distinct JEV genotypes across various regions
of mainland China.’>*® Underpinned by these assumptions, we de-
veloped a dynamic compartmental model described by differential
equations that encapsulates the transmission dynamics of JEV be-
tween mosquito vectors and human hosts. The basic idea is to divide
the population and mosquitoes into several compartments to re-
present different disease states, and then use differential equations
to study the transmission dynamics of JE. Therefore, the compart-
mental model (“SI-SIR” model) to study the propagation of JE was
formulated which had five compartments. The part of vector com-
partments included susceptible (S,) and infected (I,) individuals, and
the other part of human compartments included susceptible (S),
infected (I), and removed (R;) individuals, respectively. Therefore,
the SI-SIR compartmental model,'®'®** incorporating the multi-host
transmission mechanism encompassed both mosquito and human
populations. The differential equations corresponding to the SI-SIR
model are illustrated as follows:
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Here, N, denotes the total population size; N, denotes the total
number of pigs; a,, represents the average bite rate of a mosquito on
pigs; B, is the probability of transmission of the virus from an in-
fected pig to a susceptible mosquito; 8, is the probability of trans-
mission of the pathogen from an infected mosquito to a susceptible
person; ¢ is the natural seeding rate of JEV in susceptible mosqui-
toes; ¢,(t) and ¢, represent mosquito birth and death rates, re-
spectively; U represents the vertical transmission probability of JEV
in mosquitoes, which assumed to remain constant during the out-
break; and D is the average duration of transmission of the virus in
humans. In order to forecast the spatial spread of JE cases, we further
established a metapopulation model based on the differential
equations of JEV dynamics, which can flexibly generate spatial
spread patterns of JE cases and has proven to be advantageous in
tracking widespread spatial transmission of infectious dis-
eases.'®?23% In this model, special transmission patterns of reported
cases (infected persons who have sought medical treatment and
been reported) and unreported cases (asymptomatic infected in-
dividuals who have not sought medical treatment or not reported)
have been set up to more accurately describe the actual transmission
of JE in China. We hypothesize that, for reported cases, the likelihood
of long-distance mobility is greatly reduced during recovery due to
medical isolation or increased awareness of self-protection, and
therefore mainly participation in limited local population interac-
tions rather than participation in broader external population mo-
bility.>**” In contrast, unreported asymptomatic infected people,
who lack clear clinical symptoms or do not seek medical help, are
often not included in the official case reporting system. We speculate
that this group of people may participate in population movements
between different regions in their daily lives just as healthy people
do. In addition, since our model focuses primarily on interactions
between human and mosquitoes, which typically do not migrate


http://www
https://trp.autonavi.com/

X. Cai, X. Wang, H. Ni et al.

over long distances due to their natural habits, the model ad-
ditionally assumes that mosquitoes are confined to a single city from
birth to death.

On the basis of the SI-SIR model, a city-resolved networked
metapopulation model by the connectivity of inter-city population
movements was constructed to simulate the spatio-temporal
transmission of JEV. The model captured the dynamics of inter-city
population movement through two modes of periodic commuters
and random visitors.'®*” The kind of periodic commuters can be
further divided into three subgroups: healthy persons (N!) (those
who both reside and work in location i), reported cases of infection
(Zj,ql}}'(t)) (those who reside in location i but work in location j), and
unreported cases of infection (Zjﬂ(N,»’} - I,»?r(t))) (those who work in
location i but reside in location j). Thus, during the workday, the total
population in location i can be calculated using the formula
N (t) = N + Zjilll (£) + Zji(NI = I (). Based on the aforemen-
tioned assumptions, when the susceptible mosquitoes (S}) bite in-
fected amplifying hosts such as pigs or migratory birds in location i,
it gives rise to a new generation of infected mosquitoes (I}'). Subse-
quently, when these infected mosquitoes (I) come into contact with
the susceptible population in location i at certain contact rate
(I ()N (1)), it creates a new generation of infected individuals. The
number of human (I"P) caused by periodic commuters can be re-
spectively estimated as follows:

HOEGEGNIGING!

I =
N (8)

In the metapopulation network model, we considered not only the
flow of periodic commuters, but also the flow of random visitors. We
assumed that the number of people moving from city j to city i and
randomly mixing with the population in city i was represented by
edthg. Furthermore, the probability that a random visitor was sus-
ceptible to infection was calculated using ZkS?k(t)/(Nj-“W(t) - Zklj'kr(t)),
where ZkSJf'k(t) represented the number of susceptible individuals
entering city j from all other city, and (N]’v“"’(t) - Zklj’.‘,{ (t)) represented
the total number of floating population in city j, which was the total
number of population minus that of reported infected individuals.
Consequently, the total number of susceptible individuals entering
city i was given by adt]Zj;eiRil}ZkS]hk(t)/(N]hW(t) — 5l (¢)). Similarly,
the number of susceptible individuals leaving city i was also calcu-
lated. The model assumed that the total number of population leaving
city i was given by 6dt1N5‘i, and the figure of susceptible individuals
S’l}(t) > Rh

The calculation methods of random visitor flow in different
compartments in the metapopulation model were similar. Since the
model assumed that reported infected individuals and mosquitoes
do not engage in long-distance movement, the compartments of
report infected individuals and mosquitoes did not involve random
movement. In addition, considering that the transfer of individuals
between different compartments or the occurrence of infections can
be regarded as sparse events, the Poisson distribution was used in
this study to capture the randomness of these events. Therefore, we
defined a single parameter i to estimate the average rate of occur-
rence of the event as follows:

was calculated using 6dt;

ke
k!

P(X = k)

where k is the number of occurrences. Therefore, Poisson distributed
random sampling technique was used in the model to generate the
dynamics of each compartment in order to better reflect the ran-
domness and uncertainty of the real data of disease surveillance.
Then, the metapopulation network model integrated national
surveillance data of JE cases and then coupled with the Bayesian
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inference-based EAKF algorithm, which assimilated weekly case
observations and population movements of cross-city to iteratively
update and estimate the parameters.>* The main idea of EAKF was to
use current observations to update the system state at a given time
point.”’ When new JE observation data entered the model, the al-
gorithm used these observation data to update the observed state
variables and iterated continuously until a set time point was
reached. The EAKF can run a series of assimilation cycles, each
consisting of a model prediction and a filter update, to perform se-
quential data assimilation and constantly update state variables and
parameters within the state space.>” As time progresses, more and
more data of JE cases are added to the process of state parameter
updating and model optimization, which theoretically enables this
metapopulation network model to better capture epidemics of dif-
ferent scales in different regions.*® This method has been success-
fully applied to infer the epidemiological parameters of different
infectious diseases.***° Details of this model are described in the
Supplementary pp 8-14.

Inference of JE transmission dynamic parameters

Three parameters including the mosquito-to-human transmis-
sion rate (Bmm), the effective reproduction number (Res) and the
force of infection (Fy,) parameter,'®“? were adopted to reveal the
transmission dynamics of the pathogen in our study. The Ry is a
basic indicator that represents the secondary cases produced by one
typical infection with JE joining in a population during its infectious
period. The Fy signifies the probability of a susceptible individual
contracting JEV, contingent upon the likelihood of acquiring the
virus from an infected mosquito. These parameters can reveal the
potential transmission dynamics of the pathogen and help to for-
mulate more effective prevention and control measures to reduce
the risk of JE transmission. Specifically, the mosquito-to-human
transmission rate of the pathogen in city i is defined as follows:

5mth = E(t)fi(t)ﬁih(t)

where ¢;(t) denotes the weekly adjusted transmission rate estimated
by the model for each city, 7;(t) represents the mosquito biting rate,
and ﬁi"(t) is the probability of transmission of the pathogen from
vectors to humans. Furthermore, in order to reveal the dynamic
characteristics of the pathogen in each city, the weekly time series of
Refr and Fipp were also calculated using the following formula:

shosre) A OAOBM)S (OSHED
Reff = Ro = h( P2
(g — @, (YU)(N (1))

\ NINY \

s(Du(OF (OB ()

Finf(ty = NF(D
1

where S/'(t) is the total number of susceptible individuals at a lo-
cation i at time t. It is the sum of the number of susceptible in-
dividuals S}(t) residing at the location and the number of
susceptible individuals S} (t) coming to that location from other lo-
cations k(k#i). The N*(t) was calculated as follows:

NI (£) = Ni(6) + I (6) + Sh(D)

where N/'(t) represents the total population at location i at time t,
NI(t) represents the reported infected individuals residing at loca-
tion i, I (t) represents the number of reported infected individuals
from locations k(k#i) who came to that location for daily commuting,
and S} (t) represents the reported susceptible individuals who came
to that location from location k.

Moreover, we assessed the relationship between JE epidemic
intensity and the size of population movement. We estimated the
number of JE cases caused by population movements using the
following formula:
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where I, represents the number of infections caused by population
movement in each city, I"+I"* represents the total number of in-
fections (including the number of reported I"" and unreported cases
™), and ' represents the number of infections caused by local
commuters (including the number of reported I and unreported
cases II").

Results
Spatial-temporal distribution and seasonal characteristics of JE

Our study included a total of 9061 reported JE cases from 337
cities in China between 2013 and 2019. With 10 cases missing mu-
nicipal residential addresses and 56 cases outside the cities included,
8995 cases were used for data analysis. In order to investigate the
distribution difference of JE in urban and rural areas, cases were
divided into three categories including urban cases, rural cases and
total cases. We found that the number of cases was greatly higher in
rural (n=7089) than urban areas (n=1911). The annual epidemic peak
of JE generally occurred between June and October, with sporadic
cases occurring the rest of the year. In terms of spatial distribution,
there was a spatial delay in the occurrence of JE epidemic peak in
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China, showing that the north was later than the south (Fig. 1A, B).
Similar spatial and temporal patterns of JE epidemics were observed
in rural and urban areas (Fig. 1D, E, G, H). The number of JE cases
initially dropped from a peak in 2013 to a nadir in 2015, then re-
bounded to another peak in 2018, and subsequently fell to a new low
in urban areas in 2019 (Fig. 1C, F, I). In China, JE cases were pre-
dominantly concentrated in central provinces such as Sichuan,
Chongqing and Shaanxi during the 7-year study period (Fig. S1, S2).
Among the reported JE cases, the majority were laboratory-con-
firmed (82.53%, n=7478), followed by clinically confirmed cases
(9.56%, n=866) and suspected cases (7.91%, n=717) (Fig. 1C, F, ).

Fitted seasonal models of JE cases by each province were pre-
served in Figs. S3-S6. Nationwide, the JE cases exhibited an annual
peak of activity, typically peaking around August. The timing of the
annual peak of JE epidemics, however, varies apparently across dif-
ferent provinces (p-value < 0.05), with the peak in the southern
region around the 30th week, the central region around the 33rd
week, and the northern region around the 37th week, respectively
(Fig. 2B, E). There was no significant difference (p-value > 0.05) in the
annual amplitude fluctuations of JE epidemic across different pro-
vinces (Fig. 2A, D). In addition, the semi-annual periodicity of JE did
not differ significantly across latitudes (p-value > 0.05) (Fig. 2C, F).
Similarly, no significant differences were observed across longitudes
(Fig. S7).
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Fig. 1. Spatial and temporal distribution of cases of Japanese encephalitis, 2013-2019. Seasonal distribution of national (A), urban (D), and rural (G) Japanese encephalitis cases
plotted as weekly cases throughout 2013-2019. Weekly time series of national (B), urban (E), and rural (H) Japanese encephalitis cases, transformed to annual case counts. In the
above heat map, these provinces are sorted by latitude from northernmost (top) to southernmost (bottom) and the number of cases is log-transformed. Time series of weekly
cases of Japanese encephalitis from nationwide (C), urban (F) and rural (I) areas are shown, grouped by probable, laboratory-confirmed and clinically diagnosed cases.
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Fig. 2. Characteristics of the latitudinal gradient of the epidemic cycle and peak time of Japanese encephalitis in China. (A) Annual period amplitude. (B) Time of the main peak of
Japanese encephalitis per year. (C) Amplitude of the half-yearly cycle. Colors represent different climatic zones (red = tropical, yellow = subtropical, green = warm temperate, blue
= middle temperature, black = cold temperate). Symbol size is proportional to the number of cases of Japanese encephalitis in each province. The solid black line indicates the
result of a linear regression fit (regression results weighted by the annual average number of Japanese encephalitis cases). P-values of statistical tests are shown in the figure. (D)
Annual period amplitude by province. (E) Timing of major annual peaks of Japanese encephalitis in each province. (F) Amplitude of the half-yearly cycle in each province.

Inherent dynamics of JEV spread

By fitting the inferred transmission model of the JE to weekly
observed case data, we successfully estimated the magnitude of
outbreaks in three urban clusters as well as nationwide. These
findings were presented in Fig. 3. At the national level, the model
inference results were highly accurate during the simulated period,
with the median model-fit ensemble closely matching the observed
number of cases and the 95% confidence intervals (CIs) covering
nearly all observations (Figure 3A1-A5). Similarly, in Region 1, the
model performed excellent as well up to week 31, with the majority
of cases captured and encompassed by the 95% CI (Figure 3B1-B5). In
Region 2, the model’s performance stayed robust up to Week 29,
accurately forecasting both the timing and the scale of the outbreak,
with 95% Cls catching most observed cases (Figure 3C1-C5). In Re-
gion 3, the model also precisely forecasted the timing of the peak at
all instances (Figure 3D1-D5). We also estimated the number of
monthly infections nationwide in 2018 (Figure 3E1-E5). The total
number of estimated JE infections in China peaked in August, with
1348 (95% ClI: 1260 - 1569) new infections during the month. In
addition, we compared the estimated number of infections in the
three urban agglomerations in 2018 with the actual number of in-
fections (Figure 3F1-H5). For Region 2, the highest number of in-
fections was estimated for August, with 967 cases (95% CI 870-1195)
in Week 29. In general, the number of infections in various regions
and the corresponding dynamic transmission parameters began to
rise in June, reached a peak around August and September, and then
progressively dropped to zero.

Then, we focused on the changes of dynamic transmission
parameters of JE in the three major urban agglomerations, as illu-
strated in Fig. 4. In these urban agglomerations, the dynamic change
trend of JE parameters was generally consistent, especially for the
parameters fm and Rey Around the 31st week, the 8,,,;, values of JE
peaked, and gradually decreased to near zero after the 35th week in
Region 1 and Region 2, respectively (Fig. 4 A-B). Similarly, the g, in
Region 3 peaked around the 29th week to the 35th week (Fig. 4C).
The values of Rey of JE epidemics varied among different agglom-
erations, but similarly, the parameter rose gradually at first, reached
a peak, then began to decline, and finally approached zero (Fig. 4D-
F). The values of F, of JE transmission in the three areas were low
and increased only slightly during the critical epidemic period
(Fig. 4G-I). We also estimated the number of infections in the three
major urban clusters (Table 1) and all the cities covered (Table S3).
Besides, the results of the inferred parameter including B, Refrand
Fins for these regions were presented in Table 1 and Table S3.

We identified the main epidemic weeks of JE infections in each city
and how the R varied across cities (Fig. 5). The estimated cases of JE
infection mainly concentrated in central China during the 29th week.
After 2 weeks, the estimated infections gradually spread from central to
southern and northern regions. In central China, JE infections peaked in
week 33 and subsequently showed a downward trend (Fig. 5A-F). We
further depicted the relationship between the intensity of population
mobility in city networks and the number of infections due to popu-
lation mobility (Fig. 5G-L). Infections caused by population mobility
mainly occurred in hub cities with large population mobility and ra-
diated to surrounding cities. Being able to identify high-risk periods
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Fig. 3. Model fitting and estimation of national Japanese encephalitis infection. (A1-D5) Model fit for the weekly number of Japanese encephalitis cases (blue plus signs) in China
as a whole and in three city clusters. The solid red line represents the median of the estimates. The dashed black line indicates the number of weeks at which the model started to
fit. Shaded dark and shaded light intervals indicate corresponding 99% and 95% confidence intervals (CIs) of the estimates, respectively. (E1-H5) Monthly actual number of
confirmed cases (orange bars) and estimated number of infections (blue bars) of Japanese encephalitis in the whole country and three city clusters, respectively. Distribution is
obtained from 300 ensemble members generated by the coupled model. Blue bars represent the medians derived from this distribution, and whiskers represent the 95% Cls,

respectively.

and areas during an epidemic, changes of Rey are essential for char- Comprehensive sensitivity analyses demonstrated robust model
acterizing the intrinsic transmission dynamics of JEV. Cities with higher inference across the parameter space, with consistent output pat-
values of Ry were concentrated in central China, especially in the Si- terns observed under varying scenarios (Figs. S8-12). We also fitted
chuan and Chongging regions. The R,y parameter began to rise at 29 models to actual data on JE cases to respectively estimate the total
weeks, peaked around 33 weeks, and then gradually declined to near number of infections per month for the period from 2013 to 2017
zero (Fig. 5SM-R). It was seen that cities with higher values of R pre- and 2019 alone (Figs. S13-15). Results revealed inter-annual fluc-
dominantly overlapped with these hubs (Fig. 5G-L), substantiating the tuations in JE epidemic magnitude between 2013 and 2017 and 2019
significance of human mobility in facilitating the geographical dis- alone, while maintaining comparable seasonal activity patterns
semination of JE, especially in regions with high connectivity. across years (Figs. S13-15).
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coupled model.

Discussion

This study analyzed more than 9000 cases of JE reported in 337
cities in China from 2013 to 2019, revealing the geographic dis-
tribution, temporal dynamics and transmission characteristics of
JEV, and further comprehensively quantifying the national burden.
During the study period, the number of JE cases experienced a dy-
namic trend characterized by a decline from a peak to the lowest,

Table 1

followed by a gradual rise to another peak. The geographic dis-
tribution of cases was expanding but predominantly concentrated in

Parameter estimates for three major regions derived from the disease transmission dynamics model.

central China, with the epidemic showing a delayed progression
from south to north. Our large-scale study, covering 337 distinct
cities in China, demonstrates that although the peak time of JE
outbreaks varies among provinces, the annual peak usually occurs
between August and September. The magnitude of the annual epi-
demic does not vary significantly with latitude or longitude. Coupled

Region City Effective reproduction number Transmission rate Force of infection

Region 1 Tianshui 1.0115 (0.9905, 1.0324) 0.2355 (0.2348, 0.2362) 7.2069e-06 (7.1700e-06, 7.2437e-06)
Longnan 0.9298 (0.9104, 0.9491) 0.2437 (0.2429, 0.2444) 7.7861e-06 (7.7570e-06, 7.8152e-06)
Pingliang 0.564 (0.5524, 0.5757) 0.2061 (0.2055, 0.2068) 6.0725e-06 (5.8697e-06, 6.2753e-06)
Yinchuan 0.1441 (0.1411, 0.1472) 0.2652 (0.2638, 0.2667) 1.6315e-06 (1.4717e-06, 1.7913e-06)
Qingyang 0.4063 (0.3979, 0.4147) 0.2181 (0.2175, 0.2187) 2.0583e-08 (1.9564e-08, 2.1601e-08)
Yan'an 0.225 (0.2203, 0.2297) 0.2433 (0.2425, 0.2441) 5.1532e-09 (4.7116e-09, 5.5948e-09)
Baoji 0.6867 (0.6725, 0.7010) 0.2823 (0.2815, 0.2831) 4.9676e-06 (4.8034e-06, 5.1319e-06)
Shizuishan 0.1237 (0.1211, 0.1263) 0.2518 (0.2502, 0.2534) 3.7198e-06 (3.3542e-06, 4.0854e-06)
Xianyang 0.5622 (0.5506, 0.5739) 0.2956 (0.2949, 0.2964) 2.4363e-08 (2.3422e-08, 2.5304e-08)
Luoyang 0.959 (0.9392, 0.9788) 0.2933 (0.2925, 0.2942) 2.0904e-09 (1.9252e-09, 2.2556e-09)
Yuncheng 0.4212 (0.4125, 0.4299) 0.2885 (0.2877, 0.2893) 1.7162e-09 (1.5141e-09, 1.9183e-09)
Wuzhong 0.1209 (0.1184, 0.1235) 0.2418 (0.2406, 0.2430) 2.8970e-08 (2.6196e-08, 3.1743e-08)
Weinan 0.3405 (0.3334, 0.3476) 0.2966 (0.2958, 0.2973) 5.7775e-09 (5.3604e-09, 6.1946e-09)

Region 2 Chongging 2.8891 (2.8283, 2.9499) 0.2603 (0.2578, 0.2627) 2.1287e-09 (2.0153e-09, 2.2420e-09)
Zunyi 0.7558 (0.7401, 0.7714) 0.2774 (0.2762, 0.2786) 5.0289e-10 (4.2240e-10, 5.8338e-10)
Zhaotong 1.3981 (1.3686, 1.4276) 0.2317 (0.2300, 0.2335) 2.0384e-10 (1.3865e-10, 2.6903e-10)
Liangshan Yi Autonomous Prefecture 0.466 (0.4561, 0.4759) 0.17 (0.1689, 0.1710) 3.4410e-10 (2.7515e-10, 4.1304e-10)

Region 3 Panjin 0.1472 (0.1442, 0.1502) 0.2912 (0.2904, 0.2920) 4.2568e-10 (2.5666e-10, 5.9470e-10)
Beijing 0.2334 0.2286, 0.2382) 0.2811 (0.2804, 0.2818) 8.4220e-10 (7.7093e-10, 9.1347e-10)
Taian 0.388 (0.3799, 0.3960) 0.2895 (0.2889, 0.2902) 2.4006e-10 (1.6136e-10, 3.1877e-10)

The weekly average of estimated effective reproduction number, transmission rate, and force of infection around peaking time from the 29th week to the 32th week in 2018 based
on the proposed model. The median and corresponding 95% confidence intervals (Cls) of the estimated parameters are displayed. Distribution is obtained from 300 ensemble

members generated by the coupled model.
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Fig. 5. Relationship between human mobility and spatiotemporal spread of Japanese encephalitis and estimated effective reproduction numbers for 337 cities across the country
based on the model. (A-F) Estimated total weekly number of individuals infected with Japanese encephalitis in each city. Redder colors in the cities indicate more severe
infections, and the legend records the specific range of numbers infected. (G-L) Estimated number of infections due to population movement per city and the inter-city network of
population movement intensity. The red dots represent the number of infections in a city, with larger dots indicating a larger number of infections. The thickness of the blue line
represents the intensity of population movement between cities. (M-R) Weekly estimates of the effective reproduction numbers of Japanese encephalitis in each city during the
peak and post-peak epidemics period. Purple shading represents the magnitude of the effective reproduction numbers and gray shading represents no extrapolation, respectively.

with an iterative Bayesian inference technique, a networked meta-
population model was developed to successfully simulate the
transmission trajectory of JEV across 337 cities in China. Our study
demonstrated that the proposed model can accurately predict the
scale and peak time of the seasonal epidemic of JE, and successfully
infer the dynamic parameters of its seasonal transmission in China.

As a nationwide population-based study on the spatiotemporal
dynamics of JE transmission, our study enhances the understanding
of the mechanism and dynamic characteristics of mosquito-borne
disease transmission across both time and geographical scales. We
found that JE cases in China were particularly concentrated in central
provinces such as Sichuan and Chongqing, which was consistent
with previous findings.>* The spatiotemporal distribution pattern of
JE cases in urban and rural areas remained largely consistent, which
also reflected the delay of the northward spread of JE epidemic peak.
The epidemic peak of JE appeared earlier in southern China, followed
by central regions and finally northern regions, indicating that the
transmission dynamics of JE in different environments had certain
commonality.*! Notably, our study found that the number of JE cases
in rural areas of China was much higher than in urban areas, espe-
cially in areas engaged in rice cultivation and flood irrigation."***
This may be explained by the fact that rice fields in these areas not
only serve as breeding grounds for Culex mosquitoes but also attract
migratory birds that participate in the transmission cycle. Moreover,
the widespread distribution of pig farms in rural areas increases the
probability of virus-carrying mosquitoes biting pigs and humans,
thus increasing the risk of JE transmission among local residents.**
Pigs serve as key amplification hosts for JEV to enhance viral
transmission dynamics, therefore, our modeling framework in-
corporated their amplifier function through mosquito-people inter-
action. Besides, we also acknowledge that the vaccination status of
human JE vaccines has an impact on the transmission of JE. However,
our model did not take the vaccination factor into account. This is
mainly because we simulate the spatio-temporal transmission of JE

infection based on a city-resolved metapopulation network model,
which has complex parameters and hyperparameters. If the status of
human vaccination against JE is further considered, the compart-
ment model with the SI-SIR structure needs to be expanded. Given
that the primary objective of this study focused on inferring key
transmission parameters of JE, incorporating this factor in the model
will make the model extremely complex, thus reducing the relia-
bility of parameter inference.

The epidemic of the JEV exemplifies the influence of human
mobility on epidemic spreading. To study the dynamics of JE trans-
mission, networked metapopulations provide a valuable modeling
framework that takes into account the heterogeneous flow of hu-
mans. The metapopulation model proposed in our study used census
data and population migration index based on location-based ser-
vices describing the migration intensity to track the movement of
individuals between cities. The population mobility data and other
data streams were functionally compartmentalized within our
modeling framework, and each data stream played a unique role in
the construction of transmission dynamics model. By integrating an
iterative Bayesian inference algorithm with disease transmission
dynamics models, the interconnected metapopulation network
successfully simulated the transmission dynamics of JE across the
country and in three urban agglomerations and revealed the scale of
JE outbreaks at the national and major urban agglomeration levels.
In order to reveal the transmission dynamics of JEV in China, several
indicators including Ry and R.q derived from the metapopulation
network model, were estimated. Ry is crucial in the early stages of an
epidemic because it represents the expected number of secondary
infections from an infected person in a susceptible population in the
absence of any preventive measures.”” While Refr incorporates fac-
tors such as the immune status of populations, intervention mea-
sures (e.g., vaccination), and other variables that may influence
transmission, thereby reflecting the actual transmission capacity
under real situation.”® R,y and peak timing are essential for targeted



X. Cai, X. Wang, H. Ni et al.

measures in JE prevention and control as they identify high-risk
periods and areas during an epidemic.”’ According to our findings,
high R values were primarily concentrated in central regions, fur-
ther confirming these areas as core regions for JE transmission. The
results showed the seasonality of JE transmission dynamics, with R
rising peaking around August and gradually declining in September,
which also aligned with previous studies.”®>° The variations of Ry
and infection force for JE across cities in nationwide China have been
demonstrated as well (Table S3). Among the three urban agglom-
erations, the Rgy in region 1 and region 2 consistently remained
below 1, with only a slight increase during the peak period, ap-
proaching zero at the other time. In region 3, R, exceeded 2 during
the outbreak period, driving the transmission of JE. This finding
underscores the need to develop precise intervention strategies in
areas of high epidemiological susceptibility to lay the groundwork
for effective containment of mosquito-borne diseases.

Accordingly, the advanced economic growth and convenient
population mobility in the modern era has made population mobi-
lity become another potential trigger for mosquito-borne dis-
eases.”"”? Individuals traveling from endemic areas may carry the
virus to non-endemic regions, and when JEV is introduced into im-
munologically naive populations, clinical disease can manifest across
all age groups, consequently increasing the risk of localized out-
breaks, particularly in regions characterized by low vaccination
coverage or inadequate vector control measures.**> Therefore, it is
imperative to construct a refined population mobility network to
elucidate the disease burden of JEV attributable to human move-
ment. Considering each city as a subpopulation, our metapopulation
network model covering 337 cities enables us to accurately capture
the impact of human mobility on the transmission dynamics of JEV.
The movement of people partly explained JEV’s delayed progression
from south to north in China that we described earlier. Infections
driven by population movement primarily occur in hub cities with
high population movement in Chinese central areas, subsequently
radiating to neighboring cities. In addition, the results of Reg showed
that cities with higher R values largely coincided with these hubs,
which strengthens the role of population movement in the spatial
propagation of JE, particularly in regions with high connectivity. Our
findings revealed that hubs act as critical nodes in viral transmission
networks, shaping the dynamics of disease spread - a pattern that
was largely consistent with the "gravity models” in epide-
miology.”> These crucial findings could be leveraged to provide
technical assistance before and during the infectious mosquito-
borne disease outbreaks, guiding the establishment of diagnostic
networks for virus transmission. By identifying and monitoring key
transmission hubs, real-time updates and iterative improvements
can be made for the management of mosquito-borne disease.’> More
in-depth researches are encouraged to build upon these insights by
integrating flexible population mobility data into a networked
system that both supervises and diagnoses, thereby strengthening
national defenses against more mosquito-borne infectious diseases.
However, the observed incidence pattern of JE cannot be solely ex-
plained by population mobility, the high incidence in some non-hub
cities (e.g. the Shaanxi-Gansu-Ningxia region) may be the result of
the interactions of multiple factors, especially for the local agri-
cultural ecological characteristics and other factors.>”

The traditional compartmental “SIR” model uses ordinary dif-
ferential equations to simulate the transition from “susceptible” to
“infected” to “recovered” states. However, traditional compart-
mental infectious disease models often struggle to capture the
complexity of high-dimensional systems, accompanied by limita-
tions such as discrete prediction errors and high sensitivity to initial
conditions.”®°” In addition, these models lack the flexibility to ac-
count for the complex and rapidly changing transmission dynamics
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of pathogens. Our prior researches implemented the iterative
Bayesian inference algorithm-EAKF-to mitigate the sensitivity of
traditional compartmental models to initial parameter values and
address the adverse effects of zero-inflated data distributions on
modeling, enabling accurate inference of disease transmission
parameters and burden across both temporal and spatial scales.*>*°
Taking both human and mosquito compartments into consideration,
we developed mathematical models of JEV transmission based on a
system of differential equations, featuring a sequence of high-di-
mensional parameter vector (V ={S(t), I(t), R(t)...a, B, 1}). The
EAKF was applied to assimilate weekly JE case observations from
each city and intercity population mobility. By fitting the model to
case observations using the Bayesian inference technique, un-
observed state variables and system parameters were iteratively
calibrated and estimated. The sensitivity analysis in our study de-
monstrated a robust estimation of the spread of JEV over a wide
range of initial model conditions, proving the robustness of this
method to parameter perturbations (Fig S8-S12). Our results indicate
that the developed model can accurately fit the observed JE case
data, capturing the consecutive epidemic waves occurring at both
the national and city levels.

As a nationwide study, our research achieved some advances in
elucidating transmission dynamics of JEV. By coupling with the EAKF
algorithm, this study overcomes the limitations of the traditional
compartmental models of infectious disease, we inferred transmis-
sion parameters precisely on a spatiotemporal scale. A refined me-
tapopulation network model covering 337 cities was developed to
quantify the role of population migration in the transmission of JEV
in China. The established model naturally integrated population
immunity and iteratively estimated the time-evolving parameters of
Refr, which was helpful for evaluating the effectiveness of vaccines or
other public health intervention measures. Furthermore, the in-
tegration of multi-dimensional data enabled us to simulate JEV
transmission at national and urban agglomeration scales, which
identified high-risk regions, thus improving the situational aware-
ness capabilities for mosquito-borne diseases. We bridged gaps in
JEV dynamic modeling, offering transformative tools for public in-
terventions of mosquito-borne diseases. Despite the progress we
made, the study still has several limitations. Although our analysis
utilized mosquito vector abundance data from 89 surveillance sites,
representing the most comprehensive surveillance information
currently available nationwide, limited accessibility in some remote
areas may lead to potential bias in our density estimates. Second, our
research examined the spread of JE based on large-scale population
mobility between cities. But our study could not discern finer details,
such as how far individuals traveled, how long they spent in dif-
ferent concrete locations, or how often they visited different desti-
nations. Third, the pathogen of JEV in China is predominantly
represented by genotype I (GI) and III (GIII), featuring discrepant
transmission cycles and dynamics.”® Considering the heterogeneity
of virus transmission among populations in different cities, our
study did not take into account the clade-specific effects of GI and
GIII on transmission dynamics. Future studies should further explore
the differences in transmission modes between the two genotypes.

Conclusions

In summary, this study comprehensively quantified the evolution
of the time-evolving epidemiological characteristics of JE in China
from 2013 to 2019. The integration of networked metapopulation
and Bayesian inference method expands the understanding of dy-
namic transmission of JE at temporal and spatial scales, providing
empirical evidence for identifying high-risk populations susceptible
to mosquitoes and implementing prevention strategies. Our work
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enhances the situational awareness of the spread of mosquito-borne
diseases, on which future mitigation policies can consider building
early warning systems for mosquito-borne diseases.
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