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s u m m a r y

Objectives: In recent decades, China has experienced successive epidemics of seasonal Japanese encephalitis 
(JE), with the Japanese encephalitis virus (JEV) particularly spreading continuously in rural and suburban 
areas.
Methods: Nationwide data on 9061 JE cases, mosquito abundance from 89 surveillance sites, and population 
movement between 337 cities during 2013–19 were obtained. Seasonal multivariate linear regression 
models including time trends and reconciliation terms representing annual and semiannual cycles were 
fitted to the weekly time series of JE cases, and the amplitude and peak time of the cycles were estimated. A 
metapopulation network model of inter-city population mobility coupled with an iterative Bayesian in
ference algorithm was established to simulate the epidemic dynamics of JEV and estimate the time-varying 
transmission parameters.
Results: The timing of the annual peak of JEV epidemics varied with latitude (p-value < 0.05), mainly 
characterized by earlier in southern cities and later in northern cities. There was no significant difference in 
the annual amplitude fluctuations of JEV epidemics in different latitudes (p-value > 0.05). Regions with 
higher values of effective reproduction number Reff were mainly concentrated in central China, including 
Sichuan, Chongqing and Shaanxi provinces, with the annual activity peak typically occurring around August. 
Infections caused by population mobility mainly occurred in hub cities with high connectivity and radiated 
to surrounding cities.
Conclusions: Findings from this nationwide study can help enhance situational awareness of the spread of 
JE and inform appropriate intervention strategies to advance the goal of JE elimination.

© 2025 The Author(s). Published by Elsevier Ltd on behalf of The British Infection Association. This is an 
open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Introduction

Japanese encephalitis (JE) is a mosquito-borne viral disease 
caused by the Japanese encephalitis virus (JEV) that continues to be 
endemic throughout Southeast Asia, India, Indonesia, and parts of 
Australia.1 JEV persists in the natural environment via a bird-mos
quito cycle, but zoonosis may be enhanced via an intermediate pig- 
mosquito cycle, which brings the virus into closer contact with 
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humans.1 Approximately 3 billion people are exposed to the risk of 
JEV infection in the world, and nearly 67,900 JE cases occur each 
year, resulting in 709,000 disability-adjusted life years annually.2,3

Severe cases of JE generally have a poor prognosis, with one-third of 
infected people having neurological sequelae and one-third dying 
from the infection.4 JE impairs the quality of life for patients and 
their families, placing a significant burden on global public health 
and the healthcare economy. In China, thousands of cases of JE are 
reported each year, with China accounting for 15.27% to 56.26% of all 
JE cases reported to the World Health Organization (WHO) during 
the period 2013–2018, displaying a significantly high disease 
burden.5

China has experienced sporadic JE outbreaks over the past dec
ades, with remarkable spatial and temporal heterogeneity in disease 
distribution.6 Despite widespread implementation of the JE vaccine 
and significant improvements in sanitation, the incidence is rising in 
China due to global warming and increased diagnostic capacity, as 
well as improved reporting awareness.7,8 JEV continues to spread, 
especially in rural and peri-urban regions where environmental and 
socio-economic conditions favor its transmission.9–12 The high in
cidence areas of JE are mainly distributed throughout southwestern 
and central China, such as Guizhou, Sichuan, Chongqing, and Henan 
provinces, which are greatly affected by climate and population 
density.9 July to September is the primary epidemic season of JE, 
coinciding with the peak of the rainy season and the high incidence 
of mosquito activity.13 Although previous studies have described 
environmental factors along with the spatiotemporal distribution of 
JE and quantified its associated burden in specific regions of China, 
these studies relied on small sample sizes of case surveillance data 
and were also geographically limited.8,14–17 Therefore, they are un
able to capture the dynamics of transmission that evolve over time 
or characterize the burden of JEV transmission across China. At 
present, there is a lack of research on the spatio-temporal trans
mission characteristics and burden of JE in China, and a compre
hensive evaluation is urgently needed.

For a better understanding of the transmission of JEV and effec
tively control its future progression, it is essential to quantify the 
epidemiological characteristics of these outbreaks across both spa
tial and temporal scales. Therefore, we conducted a nationwide 
study on the epidemiology of JE using surveillance data of JE cases 
legally reported from the National Disease Notification and 
Surveillance System (NNDSS) covering 337 Chinese cities from 2013 
to 2019. We adapted a city-resolved metapopulation network 
model18 to simulate the spatio-temporal transmission of JE infection. 
This networked metapopulation model can flexibly generate com
plex population mobility patterns between different regions based 
on the observed inter-city population flow. Then, the metapopula
tion network integrates national surveillance data of JE cases and is 
coupled with the ensemble adjustment Kalman filter (EAKF), an 
iterative Bayesian inference algorithm, which assimilates weekly 
case observations across cities and intercity population move
ments.18,19 The integration of the Bayesian inference technique fa
cilitates the calibration of the model to case observations, enabling 
the parameters in the model to be updated iteratively, thus reducing 
the impact of unreasonable initial parameter setting and model error 
discretization.20,21 At the same time, the method is also able to es
timate hidden state variables, such as weekly new infections within 
a city, and time-varying parameters, such as time-varying trans
mission rates of the disease.22 Therefore, we developed such a new 
method to simulate the evolution of transmission of mosquito-borne 
infectious diseases. This study represents the first attempt to com
prehensively quantify the spatio-temporal transmission dynamics of 
JE in China and estimate the epidemiological burden caused by 
successive waves of JE epidemics to date.

Methods

Study domain

This study covered a total of 337 prefecture-level administrative 
divisions in China, including 293 prefecture-level cities, 30 autono
mous prefectures, 7 counties and 3 leagues, and 4 municipalities. In 
order to make the analysis of regions consistent and easy to describe, 
administrative divisions at the prefecture, municipal and all other 
prefecture-level in the analytical framework were collectively re
ferred to as ‘city’. Therefore, a total of 337 cities (Fig. S1) were finally 
included in this study for descriptive analysis and simulation mod
eling of infectious disease transmission. In addition, these cities 
were further dynamically categorized into different city clusters 
according to the severity of JE epidemics in different years (Fig. S2
and Supplementary pp 15–17).

JE case surveillance data

All clinically diagnosed, laboratory-confirmed, and suspected 
cases of JE reported to the NNDSS of the Chinese Center for Disease 
Control and Prevention (China CDC) covering 337 cities from January 
1, 2013, to December 31, 2019, were extracted. All cases of JE were 
diagnosed according to the diagnostic criteria issued by the Ministry 
of Health of the People’s Republic of China (Criteria No. WS 
214–2008).23 The definitions of suspected, clinically diagnosed, and 
laboratory-confirmed cases of JE can be found in Supplementary pp 
5–8. The diagnosis is based on a combination of epidemiological 
evidence, clinical presentation and laboratory findings of the patient. 
Information on JE cases included basic demographic information 
(age, sex, date of birth, national standard code of the individual’s 
current residence, etc.), and time information on disease status (date 
of disease onset, date of diagnosis, and date of death). Further, the 
weekly number of JE cases was aggregated by individual current 
residential address to city-level spatial resolution for analysis. Each 
week was defined as a 7-day cycle that begins on January 1, resulting 
in a total of 52 weeks per year.

Mosquito abundance data and meteorological monitoring data

In this study, there were two types of mosquito abundance data, 
which were respectively used to assess the density of mosquito 
larvae and adult mosquitoes in each area. The Breteau Index (BI) was 
used as a quantitative indicator for assessing Aedes mosquito larval 
density.18 Given that the primary vector of JEV is Culex tritae
niorhynchus, we calculated a weighted BI proposed by previous 
studies24,25 to more accurately reflect the true mosquito vector 
density. The BI can be calculated by the following formula 

= × ×BI W LPC NH( / ) 100, where W represents the weight, LPC re
presents the number of positive containers (with Ae. aegypti pupae 
or larvae) inspected, and NH represents the number of households 
surveyed. Based on the mosquito abundance data of 89 monitoring 
sites across mainland China, BI values of each city were calculated. 
The adult Culex tritaeniorhynchus mosquitoes density was mon
itored using mosquito trapping lamps. In urban areas, monitoring 
sites were selected from three types of habitats, including residential 
areas, parks, and hospitals. In rural areas, two types of habitats, in
cluding residential houses and livestock sheds, were chosen. Mon
itoring was conducted twice per month throughout the entire 
annual mosquito population fluctuation cycle. Data on daily tem
perature (°C) during the period from January 1, 2013, to December 
31, 2019, based on 2441 meteorological stations, was obtained from 
the China Meteorological Data Sharing System (http://data.cma.cn/). 
The ambient temperature data were matched to the respective cities 
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based on the geographical location of the stations. The average 
temperature for each city was calculated as the average temperature 
of meteorological stations within the city.

Population movement data

A metapopulation network model with inter-city population move
ment as the link was developed in this study to simulate the spatio- 
temporal transmission dynamics of JE infection. Initially, we obtained 
China’s population movement statistics through the seventh population 
census in 2020, which is publicly released by the National Bureau of 
Statistics (http://www. stats.gov.cn/). In order to estimate city-level po
pulation migration data and match population outflows and inflows to 
our prefecture-level city administrations, we then obtained the 
weighting parameter (i.e., population migration index) representing the 
daily inter-city traffic volume from the Gaode Migration Big Data plat
form (https://trp.autonavi.com/ migrate/page.do). Based on location- 
based services (LBS), the Gaode platform collects geographic location 
changes from users’ mobile phone positioning and describes the in
tensity of migration between cities. We further combined the population 
movement statistics of the census and the Gaode population migration 
index to derive weekly population migration flows between cities. 
Therefore, the weekly population migration inflows and outflows of 
people between different cities were calculated using the following 
formula = × ==n t n t i n t i t( ) ( , )/ ( , )), 1: 52A B A i A B k A A k1

7 . Here, 
n t i( , )A B is the migration index from city B to city A on week t and A
denotes the static population inflow for city A according to the census. To 
reduce the potential impact of the COVID-19 pandemic on population 
migration patterns, we selected the human migration index for the en
tire year from June 1, 2018, to May 31, 2019, to match each calendar year. 
We assumed in the model that population mobility patterns were si
milar in each calendar year during the study period.

Stratification of urban and rural areas

We defined the main economic and population-dense areas of 
each prefecture-level city as urban areas, including 977 municipal 
districts, which typically have higher economic and educational le
vels and higher population density.26 The remaining 1866 counties 
in each prefectural city were defined as rural areas, which are gen
erally larger in area but have lower population density and economic 
level. To quantify the seasonal distribution of urban and rural JE 
cases across China, we developed a heatmap to describe the weekly 
number of JE cases during the entire year. In addition, to examine 
changes over consecutive years, a heatmap of the annual number of 
JE cases between 2013 and 2019 was also generated. According to 
the classification of urban and rural cases, we further used stacked 
bar charts to describe cases of different diagnostic categories. The 
study also revealed seasonal patterns in total cases, including urban 
and rural cases.

Latitudinal gradient characteristics of JE case distribution

Seasonal multiple linear regression models including time trends 
and reconciliation terms to represent annual and semiannual cy
cles18,27–29 were also fitted to weekly time series of JE cases. Based 
on the estimated model coefficients, we extracted the amplitudes 
and peak times of the annual and semiannual cycles of the case 
count time series. The difference between the maximum and 
minimum values of the JE epidemiological curve is measured by the 
amplitude. The peak times referrs to the time point when the 
number of JE cases is at the highest level. In addition, the periodic 
information to describe the temporal spread of the disease con
sidered in the model was mainly used to explore whether the epi
demic cycle of JE appeared annually or semiannually.

Metapopulation network model coupled with Bayesian inference

The existence of cross-protective immunity against each geno
type of the JEV in the population30,31 is the basic assumption of the 
model constructed in this study. It also accounts for the widespread 
circulation of the five distinct JEV genotypes across various regions 
of mainland China.32,33 Underpinned by these assumptions, we de
veloped a dynamic compartmental model described by differential 
equations that encapsulates the transmission dynamics of JEV be
tween mosquito vectors and human hosts. The basic idea is to divide 
the population and mosquitoes into several compartments to re
present different disease states, and then use differential equations 
to study the transmission dynamics of JE. Therefore, the compart
mental model (“SI-SIR” model) to study the propagation of JE was 
formulated which had five compartments. The part of vector com
partments included susceptible S( )v and infected I( )v individuals, and 
the other part of human compartments included susceptible S( )h , 
infected I( )h , and removed R( )h individuals, respectively. Therefore, 
the SI-SIR compartmental model,18,19,34 incorporating the multi-host 
transmission mechanism encompassed both mosquito and human 
populations. The differential equations corresponding to the SI-SIR 
model are illustrated as follows:

= + +dS
dt

a I

N
S t S U I S( )( (1 ) )v vp p p

p
v b v v d v

= + +dI
dt

a I

N
S t UI I( )v vp p p

p
v b v d v

=dS
dt

t S I
N

( )h h h v

h

=dI
dt

t S I
N

I
D

( )h h h v

h

h

Here, Nh denotes the total population size; Np denotes the total 
number of pigs; avp represents the average bite rate of a mosquito on 
pigs; p is the probability of transmission of the virus from an in
fected pig to a susceptible mosquito; h is the probability of trans
mission of the pathogen from an infected mosquito to a susceptible 
person; is the natural seeding rate of JEV in susceptible mosqui
toes; t( )b and d represent mosquito birth and death rates, re
spectively; U represents the vertical transmission probability of JEV 
in mosquitoes, which assumed to remain constant during the out
break; and D is the average duration of transmission of the virus in 
humans. In order to forecast the spatial spread of JE cases, we further 
established a metapopulation model based on the differential 
equations of JEV dynamics, which can flexibly generate spatial 
spread patterns of JE cases and has proven to be advantageous in 
tracking widespread spatial transmission of infectious dis
eases.18,22,35 In this model, special transmission patterns of reported 
cases (infected persons who have sought medical treatment and 
been reported) and unreported cases (asymptomatic infected in
dividuals who have not sought medical treatment or not reported) 
have been set up to more accurately describe the actual transmission 
of JE in China. We hypothesize that, for reported cases, the likelihood 
of long-distance mobility is greatly reduced during recovery due to 
medical isolation or increased awareness of self-protection, and 
therefore mainly participation in limited local population interac
tions rather than participation in broader external population mo
bility.36,37 In contrast, unreported asymptomatic infected people, 
who lack clear clinical symptoms or do not seek medical help, are 
often not included in the official case reporting system. We speculate 
that this group of people may participate in population movements 
between different regions in their daily lives just as healthy people 
do. In addition, since our model focuses primarily on interactions 
between human and mosquitoes, which typically do not migrate 
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over long distances due to their natural habits, the model ad
ditionally assumes that mosquitoes are confined to a single city from 
birth to death.

On the basis of the SI-SIR model, a city-resolved networked 
metapopulation model by the connectivity of inter-city population 
movements was constructed to simulate the spatio-temporal 
transmission of JEV. The model captured the dynamics of inter-city 
population movement through two modes of periodic commuters 
and random visitors.18,37 The kind of periodic commuters can be 
further divided into three subgroups: healthy persons (Nii

h) (those 
who both reside and work in location i), reported cases of infection 

I t( ( ))j i ji
hr (those who reside in location i but work in location j), and 

unreported cases of infection N I t( ( ( )))j i ij
h

ij
hr (those who work in 

location i but reside in location j). Thus, during the workday, the total 
population in location i can be calculated using the formula 

= + +N t N I t N I t( ) ( ) ( ( ))i
hw

ii
h

j i ji
hr

j i ij
h

ij
hr . Based on the aforemen

tioned assumptions, when the susceptible mosquitoes S( )i
v bite in

fected amplifying hosts such as pigs or migratory birds in location i, 
it gives rise to a new generation of infected mosquitoes I( )i

v . Subse
quently, when these infected mosquitoes I( )i

v come into contact with 
the susceptible population in location i at certain contact rate 
I t N t( ( )/ ( ))i

v
i
hw , it creates a new generation of infected individuals. The 

number of human I( )hp caused by periodic commuters can be re
spectively estimated as follows:

=I
t t t S t I t

N t

( ) ( ) ( ) ( ) ( )

( )
hp i i i

h
ij
h

i
v

i
hw

In the metapopulation network model, we considered not only the 
flow of periodic commuters, but also the flow of random visitors. We 
assumed that the number of people moving from city j to city i and 
randomly mixing with the population in city i was represented by 
dt Rij

h
1 . Furthermore, the probability that a random visitor was sus

ceptible to infection was calculated using S t N t I t( )/( ( ) ( ))k jk
h

j
hw

k jk
hr , 

where S t( )k jk
h represented the number of susceptible individuals 

entering city j from all other city, and N t I t( ( ) ( ))j
hw

k jk
hr represented 

the total number of floating population in city j, which was the total 
number of population minus that of reported infected individuals. 
Consequently, the total number of susceptible individuals entering 
city i was given by dt R S t N t I t( )/( ( ) ( ))j i ij

h
k jk

h
j
hw

k jk
hr

1 . Similarly, 
the number of susceptible individuals leaving city i was also calcu
lated. The model assumed that the total number of population leaving 
city i was given by dt Nji

h
1 , and the figure of susceptible individuals 

was calculated using dt R
S t

N t I t j i ji
h

1
( )

( ) ( )

ij
h

i
hw

k ki
hr .

The calculation methods of random visitor flow in different 
compartments in the metapopulation model were similar. Since the 
model assumed that reported infected individuals and mosquitoes 
do not engage in long-distance movement, the compartments of 
report infected individuals and mosquitoes did not involve random 
movement. In addition, considering that the transfer of individuals 
between different compartments or the occurrence of infections can 
be regarded as sparse events, the Poisson distribution was used in 
this study to capture the randomness of these events. Therefore, we 
defined a single parameter to estimate the average rate of occur
rence of the event as follows:

=P X k
e
k

( )
!

k

where k is the number of occurrences. Therefore, Poisson distributed 
random sampling technique was used in the model to generate the 
dynamics of each compartment in order to better reflect the ran
domness and uncertainty of the real data of disease surveillance.

Then, the metapopulation network model integrated national 
surveillance data of JE cases and then coupled with the Bayesian 

inference-based EAKF algorithm, which assimilated weekly case 
observations and population movements of cross-city to iteratively 
update and estimate the parameters.34 The main idea of EAKF was to 
use current observations to update the system state at a given time 
point.21 When new JE observation data entered the model, the al
gorithm used these observation data to update the observed state 
variables and iterated continuously until a set time point was 
reached. The EAKF can run a series of assimilation cycles, each 
consisting of a model prediction and a filter update, to perform se
quential data assimilation and constantly update state variables and 
parameters within the state space.35 As time progresses, more and 
more data of JE cases are added to the process of state parameter 
updating and model optimization, which theoretically enables this 
metapopulation network model to better capture epidemics of dif
ferent scales in different regions.38 This method has been success
fully applied to infer the epidemiological parameters of different 
infectious diseases.34,39 Details of this model are described in the 
Supplementary pp 8–14.

Inference of JE transmission dynamic parameters

Three parameters including the mosquito-to-human transmis
sion rate (βmth), the effective reproduction number (Reff) and the 
force of infection (Finf) parameter,18,40 were adopted to reveal the 
transmission dynamics of the pathogen in our study. The Reff is a 
basic indicator that represents the secondary cases produced by one 
typical infection with JE joining in a population during its infectious 
period. The Finf signifies the probability of a susceptible individual 
contracting JEV, contingent upon the likelihood of acquiring the 
virus from an infected mosquito. These parameters can reveal the 
potential transmission dynamics of the pathogen and help to for
mulate more effective prevention and control measures to reduce 
the risk of JE transmission. Specifically, the mosquito-to-human 
transmission rate of the pathogen in city i is defined as follows:

= t t t( ) ( ) ( )mth i i
h

where εi(t) denotes the weekly adjusted transmission rate estimated 
by the model for each city, τi(t) represents the mosquito biting rate, 
and t( )i

h is the probability of transmission of the pathogen from 
vectors to humans. Furthermore, in order to reveal the dynamic 
characteristics of the pathogen in each city, the weekly time series of 
Reff and Finf were also calculated using the following formula:

= =R R
S t S t

N N

t t t S t S t D

t U N t

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ( ) )( ( ))
eff

i
h

i
v

i
h

i
v

i i i
h

i
v

i
h

d b i
h0

2 2

2

=F
t t I t t

N t

( ) ( ) ( ) ( )

( )
t

i i i
v

i
h

i
hinf( )

where S t( )i
h is the total number of susceptible individuals at a lo

cation i at time t. It is the sum of the number of susceptible in
dividuals S t( )ii

h residing at the location and the number of 
susceptible individuals S t( )ik

h coming to that location from other lo
cations k(k≠i). The N t( )i

h was calculated as follows:

= + +N t N t I t S t( ) ( ) ( ) ( )i
h

ii
h

ik
h

ik
h

where N t( )i
h represents the total population at location i at time t, 

N t( )ii
h represents the reported infected individuals residing at loca

tion i, I t( )ik
h represents the number of reported infected individuals 

from locations k(k≠i) who came to that location for daily commuting, 
and S t( )ik

h represents the reported susceptible individuals who came 
to that location from location k.

Moreover, we assessed the relationship between JE epidemic 
intensity and the size of population movement. We estimated the 
number of JE cases caused by population movements using the 
following formula:
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= +I I I I Ipm
hr hu

ii
hr

ii
hu

where Ipm represents the number of infections caused by population 
movement in each city, Ihr+Ihu represents the total number of in
fections (including the number of reported Ihr and unreported cases 
Ihu), and Iii

hr represents the number of infections caused by local 
commuters (including the number of reported Iii

hr and unreported 
cases Iii

hu).

Results

Spatial-temporal distribution and seasonal characteristics of JE

Our study included a total of 9061 reported JE cases from 337 
cities in China between 2013 and 2019. With 10 cases missing mu
nicipal residential addresses and 56 cases outside the cities included, 
8995 cases were used for data analysis. In order to investigate the 
distribution difference of JE in urban and rural areas, cases were 
divided into three categories including urban cases, rural cases and 
total cases. We found that the number of cases was greatly higher in 
rural (n=7089) than urban areas (n=1911). The annual epidemic peak 
of JE generally occurred between June and October, with sporadic 
cases occurring the rest of the year. In terms of spatial distribution, 
there was a spatial delay in the occurrence of JE epidemic peak in 

China, showing that the north was later than the south (Fig. 1A, B). 
Similar spatial and temporal patterns of JE epidemics were observed 
in rural and urban areas (Fig. 1D, E, G, H). The number of JE cases 
initially dropped from a peak in 2013 to a nadir in 2015, then re
bounded to another peak in 2018, and subsequently fell to a new low 
in urban areas in 2019 (Fig. 1C, F, I). In China, JE cases were pre
dominantly concentrated in central provinces such as Sichuan, 
Chongqing and Shaanxi during the 7-year study period (Fig. S1, S2). 
Among the reported JE cases, the majority were laboratory-con
firmed (82.53%, n=7478), followed by clinically confirmed cases 
(9.56%, n=866) and suspected cases (7.91%, n=717) (Fig. 1C, F, I).

Fitted seasonal models of JE cases by each province were pre
served in Figs. S3-S6. Nationwide, the JE cases exhibited an annual 
peak of activity, typically peaking around August. The timing of the 
annual peak of JE epidemics, however, varies apparently across dif
ferent provinces (p-value < 0.05), with the peak in the southern 
region around the 30th week, the central region around the 33rd 
week, and the northern region around the 37th week, respectively 
(Fig. 2B, E). There was no significant difference (p-value > 0.05) in the 
annual amplitude fluctuations of JE epidemic across different pro
vinces (Fig. 2A, D). In addition, the semi-annual periodicity of JE did 
not differ significantly across latitudes (p-value > 0.05) (Fig. 2C, F). 
Similarly, no significant differences were observed across longitudes 
(Fig. S7).
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Fig. 1. Spatial and temporal distribution of cases of Japanese encephalitis, 2013–2019. Seasonal distribution of national (A), urban (D), and rural (G) Japanese encephalitis cases 
plotted as weekly cases throughout 2013–2019. Weekly time series of national (B), urban (E), and rural (H) Japanese encephalitis cases, transformed to annual case counts. In the 
above heat map, these provinces are sorted by latitude from northernmost (top) to southernmost (bottom) and the number of cases is log-transformed. Time series of weekly 
cases of Japanese encephalitis from nationwide (C), urban (F) and rural (I) areas are shown, grouped by probable, laboratory-confirmed and clinically diagnosed cases.
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Inherent dynamics of JEV spread

By fitting the inferred transmission model of the JE to weekly 
observed case data, we successfully estimated the magnitude of 
outbreaks in three urban clusters as well as nationwide. These 
findings were presented in Fig. 3. At the national level, the model 
inference results were highly accurate during the simulated period, 
with the median model-fit ensemble closely matching the observed 
number of cases and the 95% confidence intervals (CIs) covering 
nearly all observations (Figure 3A1-A5). Similarly, in Region 1, the 
model performed excellent as well up to week 31, with the majority 
of cases captured and encompassed by the 95% CI (Figure 3B1-B5). In 
Region 2, the model’s performance stayed robust up to Week 29, 
accurately forecasting both the timing and the scale of the outbreak, 
with 95% CIs catching most observed cases (Figure 3C1-C5). In Re
gion 3, the model also precisely forecasted the timing of the peak at 
all instances (Figure 3D1-D5). We also estimated the number of 
monthly infections nationwide in 2018 (Figure 3E1-E5). The total 
number of estimated JE infections in China peaked in August, with 
1348 (95% CI: 1260 - 1569) new infections during the month. In 
addition, we compared the estimated number of infections in the 
three urban agglomerations in 2018 with the actual number of in
fections (Figure 3F1-H5). For Region 2, the highest number of in
fections was estimated for August, with 967 cases (95% CI 870–1195) 
in Week 29. In general, the number of infections in various regions 
and the corresponding dynamic transmission parameters began to 
rise in June, reached a peak around August and September, and then 
progressively dropped to zero.

Then, we focused on the changes of dynamic transmission 
parameters of JE in the three major urban agglomerations, as illu
strated in Fig. 4. In these urban agglomerations, the dynamic change 
trend of JE parameters was generally consistent, especially for the 
parameters βmth and Reff. Around the 31st week, the mth values of JE 
peaked, and gradually decreased to near zero after the 35th week in 
Region 1 and Region 2, respectively (Fig. 4 A-B). Similarly, the mth in 
Region 3 peaked around the 29th week to the 35th week (Fig. 4C). 
The values of Reff of JE epidemics varied among different agglom
erations, but similarly, the parameter rose gradually at first, reached 
a peak, then began to decline, and finally approached zero (Fig. 4D- 
F). The values of Finf of JE transmission in the three areas were low 
and increased only slightly during the critical epidemic period 
(Fig. 4G-I). We also estimated the number of infections in the three 
major urban clusters (Table 1) and all the cities covered (Table S3). 
Besides, the results of the inferred parameter including βmth, Reff and 
Finf for these regions were presented in Table 1 and Table S3.

We identified the main epidemic weeks of JE infections in each city 
and how the Reff varied across cities (Fig. 5). The estimated cases of JE 
infection mainly concentrated in central China during the 29th week. 
After 2 weeks, the estimated infections gradually spread from central to 
southern and northern regions. In central China, JE infections peaked in 
week 33 and subsequently showed a downward trend (Fig. 5A-F). We 
further depicted the relationship between the intensity of population 
mobility in city networks and the number of infections due to popu
lation mobility (Fig. 5G-L). Infections caused by population mobility 
mainly occurred in hub cities with large population mobility and ra
diated to surrounding cities. Being able to identify high-risk periods 

Fig. 2. Characteristics of the latitudinal gradient of the epidemic cycle and peak time of Japanese encephalitis in China. (A) Annual period amplitude. (B) Time of the main peak of 
Japanese encephalitis per year. (C) Amplitude of the half-yearly cycle. Colors represent different climatic zones (red = tropical, yellow = subtropical, green = warm temperate, blue 
= middle temperature, black = cold temperate). Symbol size is proportional to the number of cases of Japanese encephalitis in each province. The solid black line indicates the 
result of a linear regression fit (regression results weighted by the annual average number of Japanese encephalitis cases). P-values of statistical tests are shown in the figure. (D) 
Annual period amplitude by province. (E) Timing of major annual peaks of Japanese encephalitis in each province. (F) Amplitude of the half-yearly cycle in each province.
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and areas during an epidemic, changes of Reff are essential for char
acterizing the intrinsic transmission dynamics of JEV. Cities with higher 
values of Reff were concentrated in central China, especially in the Si
chuan and Chongqing regions. The Reff parameter began to rise at 29 
weeks, peaked around 33 weeks, and then gradually declined to near 
zero (Fig. 5M-R). It was seen that cities with higher values of Reff pre
dominantly overlapped with these hubs (Fig. 5G-L), substantiating the 
significance of human mobility in facilitating the geographical dis
semination of JE, especially in regions with high connectivity.

Comprehensive sensitivity analyses demonstrated robust model 
inference across the parameter space, with consistent output pat
terns observed under varying scenarios (Figs. S8-12). We also fitted 
models to actual data on JE cases to respectively estimate the total 
number of infections per month for the period from 2013 to 2017 
and 2019 alone (Figs. S13-15). Results revealed inter-annual fluc
tuations in JE epidemic magnitude between 2013 and 2017 and 2019 
alone, while maintaining comparable seasonal activity patterns 
across years (Figs. S13-15).

Fig. 3. Model fitting and estimation of national Japanese encephalitis infection. (A1-D5) Model fit for the weekly number of Japanese encephalitis cases (blue plus signs) in China 
as a whole and in three city clusters. The solid red line represents the median of the estimates. The dashed black line indicates the number of weeks at which the model started to 
fit. Shaded dark and shaded light intervals indicate corresponding 99% and 95% confidence intervals (CIs) of the estimates, respectively. (E1-H5) Monthly actual number of 
confirmed cases (orange bars) and estimated number of infections (blue bars) of Japanese encephalitis in the whole country and three city clusters, respectively. Distribution is 
obtained from 300 ensemble members generated by the coupled model. Blue bars represent the medians derived from this distribution, and whiskers represent the 95% CIs, 
respectively.
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Discussion

This study analyzed more than 9000 cases of JE reported in 337 
cities in China from 2013 to 2019, revealing the geographic dis
tribution, temporal dynamics and transmission characteristics of 
JEV, and further comprehensively quantifying the national burden. 
During the study period, the number of JE cases experienced a dy
namic trend characterized by a decline from a peak to the lowest, 

followed by a gradual rise to another peak. The geographic dis
tribution of cases was expanding but predominantly concentrated in 
central China, with the epidemic showing a delayed progression 
from south to north. Our large-scale study, covering 337 distinct 
cities in China, demonstrates that although the peak time of JE 
outbreaks varies among provinces, the annual peak usually occurs 
between August and September. The magnitude of the annual epi
demic does not vary significantly with latitude or longitude. Coupled 

Fig. 4. Inference of time-varying transmission parameters for Japanese encephalitis in three regions. (A-C) Distribution of transmission rates for Japanese encephalitis. (D-F) 
Distribution of effective reproduction numbers for Japanese encephalitis. (G-I) Distribution of force of infection for Japanese encephalitis. The center line indicates the median, the 
box boundary denotes the inter-quartile range, and the dashed line represents the range, respectively. Distribution is obtained from 300 ensemble members generated by the 
coupled model.

Table 1 
Parameter estimates for three major regions derived from the disease transmission dynamics model. 

Region City Effective reproduction number Transmission rate Force of infection

Region 1 Tianshui 1.0115 (0.9905, 1.0324) 0.2355 (0.2348, 0.2362) 7.2069e-06 (7.1700e-06, 7.2437e-06)
Longnan 0.9298 (0.9104, 0.9491) 0.2437 (0.2429, 0.2444) 7.7861e-06 (7.7570e-06, 7.8152e-06)
Pingliang 0.564 (0.5524, 0.5757) 0.2061 (0.2055, 0.2068) 6.0725e-06 (5.8697e-06, 6.2753e-06)
Yinchuan 0.1441 (0.1411, 0.1472) 0.2652 (0.2638, 0.2667) 1.6315e-06 (1.4717e-06, 1.7913e-06)
Qingyang 0.4063 (0.3979, 0.4147) 0.2181 (0.2175, 0.2187) 2.0583e-08 (1.9564e-08, 2.1601e-08)
Yan’an 0.225 (0.2203, 0.2297) 0.2433 (0.2425, 0.2441) 5.1532e-09 (4.7116e-09, 5.5948e-09)
Baoji 0.6867 (0.6725, 0.7010) 0.2823 (0.2815, 0.2831) 4.9676e-06 (4.8034e-06, 5.1319e-06)
Shizuishan 0.1237 (0.1211, 0.1263) 0.2518 (0.2502, 0.2534) 3.7198e-06 (3.3542e-06, 4.0854e-06)
Xianyang 0.5622 (0.5506, 0.5739) 0.2956 (0.2949, 0.2964) 2.4363e-08 (2.3422e-08, 2.5304e-08)
Luoyang 0.959 (0.9392, 0.9788) 0.2933 (0.2925, 0.2942) 2.0904e-09 (1.9252e-09, 2.2556e-09)
Yuncheng 0.4212 (0.4125, 0.4299) 0.2885 (0.2877, 0.2893) 1.7162e-09 (1.5141e-09, 1.9183e-09)
Wuzhong 0.1209 (0.1184, 0.1235) 0.2418 (0.2406, 0.2430) 2.8970e-08 (2.6196e-08, 3.1743e-08)
Weinan 0.3405 (0.3334, 0.3476) 0.2966 (0.2958, 0.2973) 5.7775e-09 (5.3604e-09, 6.1946e-09)

Region 2 Chongqing 2.8891 (2.8283, 2.9499) 0.2603 (0.2578, 0.2627) 2.1287e-09 (2.0153e-09, 2.2420e-09)
Zunyi 0.7558 (0.7401, 0.7714) 0.2774 (0.2762, 0.2786) 5.0289e-10 (4.2240e-10, 5.8338e-10)
Zhaotong 1.3981 (1.3686, 1.4276) 0.2317 (0.2300, 0.2335) 2.0384e-10 (1.3865e-10, 2.6903e-10)
Liangshan Yi Autonomous Prefecture 0.466 (0.4561, 0.4759) 0.17 (0.1689, 0.1710) 3.4410e-10 (2.7515e-10, 4.1304e-10)

Region 3 Panjin 0.1472 (0.1442, 0.1502) 0.2912 (0.2904, 0.2920) 4.2568e-10 (2.5666e-10, 5.9470e-10)
Beijing 0.2334 0.2286, 0.2382) 0.2811 (0.2804, 0.2818) 8.4220e-10 (7.7093e-10, 9.1347e-10)
Taian 0.388 (0.3799, 0.3960) 0.2895 (0.2889, 0.2902) 2.4006e-10 (1.6136e-10, 3.1877e-10)

The weekly average of estimated effective reproduction number, transmission rate, and force of infection around peaking time from the 29th week to the 32th week in 2018 based 
on the proposed model. The median and corresponding 95% confidence intervals (CIs) of the estimated parameters are displayed. Distribution is obtained from 300 ensemble 
members generated by the coupled model.
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with an iterative Bayesian inference technique, a networked meta
population model was developed to successfully simulate the 
transmission trajectory of JEV across 337 cities in China. Our study 
demonstrated that the proposed model can accurately predict the 
scale and peak time of the seasonal epidemic of JE, and successfully 
infer the dynamic parameters of its seasonal transmission in China.

As a nationwide population-based study on the spatiotemporal 
dynamics of JE transmission, our study enhances the understanding 
of the mechanism and dynamic characteristics of mosquito-borne 
disease transmission across both time and geographical scales. We 
found that JE cases in China were particularly concentrated in central 
provinces such as Sichuan and Chongqing, which was consistent 
with previous findings.33 The spatiotemporal distribution pattern of 
JE cases in urban and rural areas remained largely consistent, which 
also reflected the delay of the northward spread of JE epidemic peak. 
The epidemic peak of JE appeared earlier in southern China, followed 
by central regions and finally northern regions, indicating that the 
transmission dynamics of JE in different environments had certain 
commonality.41 Notably, our study found that the number of JE cases 
in rural areas of China was much higher than in urban areas, espe
cially in areas engaged in rice cultivation and flood irrigation.42,43

This may be explained by the fact that rice fields in these areas not 
only serve as breeding grounds for Culex mosquitoes but also attract 
migratory birds that participate in the transmission cycle. Moreover, 
the widespread distribution of pig farms in rural areas increases the 
probability of virus-carrying mosquitoes biting pigs and humans, 
thus increasing the risk of JE transmission among local residents.44

Pigs serve as key amplification hosts for JEV to enhance viral 
transmission dynamics, therefore, our modeling framework in
corporated their amplifier function through mosquito-people inter
action. Besides, we also acknowledge that the vaccination status of 
human JE vaccines has an impact on the transmission of JE. However, 
our model did not take the vaccination factor into account. This is 
mainly because we simulate the spatio-temporal transmission of JE 

infection based on a city-resolved metapopulation network model, 
which has complex parameters and hyperparameters. If the status of 
human vaccination against JE is further considered, the compart
ment model with the SI-SIR structure needs to be expanded. Given 
that the primary objective of this study focused on inferring key 
transmission parameters of JE, incorporating this factor in the model 
will make the model extremely complex, thus reducing the relia
bility of parameter inference.

The epidemic of the JEV exemplifies the influence of human 
mobility on epidemic spreading. To study the dynamics of JE trans
mission, networked metapopulations provide a valuable modeling 
framework that takes into account the heterogeneous flow of hu
mans. The metapopulation model proposed in our study used census 
data and population migration index based on location-based ser
vices describing the migration intensity to track the movement of 
individuals between cities. The population mobility data and other 
data streams were functionally compartmentalized within our 
modeling framework, and each data stream played a unique role in 
the construction of transmission dynamics model. By integrating an 
iterative Bayesian inference algorithm with disease transmission 
dynamics models, the interconnected metapopulation network 
successfully simulated the transmission dynamics of JE across the 
country and in three urban agglomerations and revealed the scale of 
JE outbreaks at the national and major urban agglomeration levels. 
In order to reveal the transmission dynamics of JEV in China, several 
indicators including R0 and Reff derived from the metapopulation 
network model, were estimated. R0 is crucial in the early stages of an 
epidemic because it represents the expected number of secondary 
infections from an infected person in a susceptible population in the 
absence of any preventive measures.45 While Reff incorporates fac
tors such as the immune status of populations, intervention mea
sures (e.g., vaccination), and other variables that may influence 
transmission, thereby reflecting the actual transmission capacity 
under real situation.46 Reff and peak timing are essential for targeted 

Fig. 5. Relationship between human mobility and spatiotemporal spread of Japanese encephalitis and estimated effective reproduction numbers for 337 cities across the country 
based on the model. (A-F) Estimated total weekly number of individuals infected with Japanese encephalitis in each city. Redder colors in the cities indicate more severe 
infections, and the legend records the specific range of numbers infected. (G-L) Estimated number of infections due to population movement per city and the inter-city network of 
population movement intensity. The red dots represent the number of infections in a city, with larger dots indicating a larger number of infections. The thickness of the blue line 
represents the intensity of population movement between cities. (M-R) Weekly estimates of the effective reproduction numbers of Japanese encephalitis in each city during the 
peak and post-peak epidemics period. Purple shading represents the magnitude of the effective reproduction numbers and gray shading represents no extrapolation, respectively.
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measures in JE prevention and control as they identify high-risk 
periods and areas during an epidemic.47 According to our findings, 
high Reff values were primarily concentrated in central regions, fur
ther confirming these areas as core regions for JE transmission. The 
results showed the seasonality of JE transmission dynamics, with Reff 

rising peaking around August and gradually declining in September, 
which also aligned with previous studies.48–50 The variations of Reff 

and infection force for JE across cities in nationwide China have been 
demonstrated as well (Table S3). Among the three urban agglom
erations, the Reff in region 1 and region 2 consistently remained 
below 1, with only a slight increase during the peak period, ap
proaching zero at the other time. In region 3, Reff exceeded 2 during 
the outbreak period, driving the transmission of JE. This finding 
underscores the need to develop precise intervention strategies in 
areas of high epidemiological susceptibility to lay the groundwork 
for effective containment of mosquito-borne diseases.

Accordingly, the advanced economic growth and convenient 
population mobility in the modern era has made population mobi
lity become another potential trigger for mosquito-borne dis
eases.51,52 Individuals traveling from endemic areas may carry the 
virus to non-endemic regions, and when JEV is introduced into im
munologically naive populations, clinical disease can manifest across 
all age groups, consequently increasing the risk of localized out
breaks, particularly in regions characterized by low vaccination 
coverage or inadequate vector control measures.43 Therefore, it is 
imperative to construct a refined population mobility network to 
elucidate the disease burden of JEV attributable to human move
ment. Considering each city as a subpopulation, our metapopulation 
network model covering 337 cities enables us to accurately capture 
the impact of human mobility on the transmission dynamics of JEV. 
The movement of people partly explained JEV’s delayed progression 
from south to north in China that we described earlier. Infections 
driven by population movement primarily occur in hub cities with 
high population movement in Chinese central areas, subsequently 
radiating to neighboring cities. In addition, the results of Reff showed 
that cities with higher Reff values largely coincided with these hubs, 
which strengthens the role of population movement in the spatial 
propagation of JE, particularly in regions with high connectivity. Our 
findings revealed that hubs act as critical nodes in viral transmission 
networks, shaping the dynamics of disease spread - a pattern that 
was largely consistent with the "gravity models" in epide
miology.53,54 These crucial findings could be leveraged to provide 
technical assistance before and during the infectious mosquito- 
borne disease outbreaks, guiding the establishment of diagnostic 
networks for virus transmission. By identifying and monitoring key 
transmission hubs, real-time updates and iterative improvements 
can be made for the management of mosquito-borne disease.55 More 
in-depth researches are encouraged to build upon these insights by 
integrating flexible population mobility data into a networked 
system that both supervises and diagnoses, thereby strengthening 
national defenses against more mosquito-borne infectious diseases. 
However, the observed incidence pattern of JE cannot be solely ex
plained by population mobility, the high incidence in some non-hub 
cities (e.g. the Shaanxi-Gansu-Ningxia region) may be the result of 
the interactions of multiple factors, especially for the local agri
cultural ecological characteristics and other factors.33

The traditional compartmental “SIR” model uses ordinary dif
ferential equations to simulate the transition from “susceptible” to 
“infected” to “recovered” states. However, traditional compart
mental infectious disease models often struggle to capture the 
complexity of high-dimensional systems, accompanied by limita
tions such as discrete prediction errors and high sensitivity to initial 
conditions.56,57 In addition, these models lack the flexibility to ac
count for the complex and rapidly changing transmission dynamics 

of pathogens. Our prior researches implemented the iterative 
Bayesian inference algorithm-EAKF-to mitigate the sensitivity of 
traditional compartmental models to initial parameter values and 
address the adverse effects of zero-inflated data distributions on 
modeling, enabling accurate inference of disease transmission 
parameters and burden across both temporal and spatial scales.35,39

Taking both human and mosquito compartments into consideration, 
we developed mathematical models of JEV transmission based on a 
system of differential equations, featuring a sequence of high-di
mensional parameter vector = …V S t I t R t( { ( ), ( ), ( ) , , }). The 
EAKF was applied to assimilate weekly JE case observations from 
each city and intercity population mobility. By fitting the model to 
case observations using the Bayesian inference technique, un
observed state variables and system parameters were iteratively 
calibrated and estimated. The sensitivity analysis in our study de
monstrated a robust estimation of the spread of JEV over a wide 
range of initial model conditions, proving the robustness of this 
method to parameter perturbations (Fig S8-S12). Our results indicate 
that the developed model can accurately fit the observed JE case 
data, capturing the consecutive epidemic waves occurring at both 
the national and city levels.

As a nationwide study, our research achieved some advances in 
elucidating transmission dynamics of JEV. By coupling with the EAKF 
algorithm, this study overcomes the limitations of the traditional 
compartmental models of infectious disease, we inferred transmis
sion parameters precisely on a spatiotemporal scale. A refined me
tapopulation network model covering 337 cities was developed to 
quantify the role of population migration in the transmission of JEV 
in China. The established model naturally integrated population 
immunity and iteratively estimated the time-evolving parameters of 
Reff, which was helpful for evaluating the effectiveness of vaccines or 
other public health intervention measures. Furthermore, the in
tegration of multi-dimensional data enabled us to simulate JEV 
transmission at national and urban agglomeration scales, which 
identified high-risk regions, thus improving the situational aware
ness capabilities for mosquito-borne diseases. We bridged gaps in 
JEV dynamic modeling, offering transformative tools for public in
terventions of mosquito-borne diseases. Despite the progress we 
made, the study still has several limitations. Although our analysis 
utilized mosquito vector abundance data from 89 surveillance sites, 
representing the most comprehensive surveillance information 
currently available nationwide, limited accessibility in some remote 
areas may lead to potential bias in our density estimates. Second, our 
research examined the spread of JE based on large-scale population 
mobility between cities. But our study could not discern finer details, 
such as how far individuals traveled, how long they spent in dif
ferent concrete locations, or how often they visited different desti
nations. Third, the pathogen of JEV in China is predominantly 
represented by genotype I (GI) and III (GIII), featuring discrepant 
transmission cycles and dynamics.58 Considering the heterogeneity 
of virus transmission among populations in different cities, our 
study did not take into account the clade-specific effects of GI and 
GIII on transmission dynamics. Future studies should further explore 
the differences in transmission modes between the two genotypes.

Conclusions

In summary, this study comprehensively quantified the evolution 
of the time-evolving epidemiological characteristics of JE in China 
from 2013 to 2019. The integration of networked metapopulation 
and Bayesian inference method expands the understanding of dy
namic transmission of JE at temporal and spatial scales, providing 
empirical evidence for identifying high-risk populations susceptible 
to mosquitoes and implementing prevention strategies. Our work 
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enhances the situational awareness of the spread of mosquito-borne 
diseases, on which future mitigation policies can consider building 
early warning systems for mosquito-borne diseases.
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