

SCOPING REVIEW

Open Access

Test accuracy of loop-mediated isothermal amplification for schistosomiasis in low endemicity areas: a systematic review and meta-analysis

Xinjie Zhou¹, Jiajia Li¹, Jiayin Qiu¹, Ting Feng¹, Chao Lv¹, Wangping Deng¹, Robert Bergquist², Jing Xu¹, Shizhu Li¹ and Zhiqiang Qin^{1*}

Abstract

Background Schistosomiasis, caused by parasitic flatworms of the genus *Schistosoma*, remains a significant public health challenge in tropical and subtropical regions, affecting over hundreds of millions of people in these areas. Accurate diagnosis is crucial for effective disease control, particularly in low-endemic areas where traditional methods like microscopy are no longer effective. We aimed to evaluate the diagnostic performance of loop-mediated isothermal amplification (LAMP) for *Schistosoma* infection.

Methods Adhering to Preferred reporting items for systematic reviews and meta-analyses guidelines, we conducted a comprehensive search on 10 May 2025 across multiple databases including PubMed, Cochrane Library, Latin American and Caribbean Literature on Health Sciences, Embase, China National Knowledge Infrastructure, and Wanfang Data, using keywords such as "schistosom*", "LAMP", and "loop-mediated isothermal amplification". Based on available literature, pooled sensitivity, specificity, positive likelihood ratio (PLR), negative likelihood ratio (NLR) and 95% confidential interval (CI) were calculated using STATA18.0 software. Subgroup analyses and univariable meta-regression were performed to explore the source of heterogeneity. Specifically, subgroup analyses were performed by categorizing into species (*S. japonicum*, *S. mansoni*, *S. haematobium*), sample type (stool, urine, serum, snails), and DNA extraction methods to explore factors influencing test performance.

Results The study finally included 24 individual studies derived from 14 published articles. The pooled analyses of LAMP data from all included studies resulted in a sensitivity of 0.90 (95% CI: 0.80–0.90), specificity of 0.82 (95% CI: 0.60–0.93), PLR of 4.98 (95% CI: 2.01–12.29), NLR of 0.13 (95% CI: 0.06–0.26) and diagnostic odds ratio of 39 (95% CI: 10–158). The area under the summary receiver operating characteristic curve reached 0.93, indicating excellent diagnostic performance. Subgroup analyses revealed optimal performance for *S. japonicum* and snail samples with lower heterogeneity ($I^2 < 50\%$).

Conclusions LAMP shows promise as a rapid, sensitive and specific diagnostic tool for schistosomiasis, particularly in resource-limited settings. This technique enables field application, supporting global efforts toward elimination of schistosomiasis by 2030.

*Correspondence:

Zhiqiang Qin
qinzq@njpd.chinacdc.cn

Full list of author information is available at the end of the article

© The Author(s) 2025. **Open Access** This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit <http://creativecommons.org/licenses/by/4.0/>. The Creative Commons Public Domain Dedication waiver (<http://creativecommons.org/publicdomain/zero/1.0/>) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Keywords Loop mediated isothermal amplification, Schistosomiasis, Diagnosis, Neglected tropical diseases, Molecular diagnostics

Background

Schistosomiasis, a disease caused by parasitic flatworms from the *Schistosoma* genus, remains a significant public health issue in tropical and subtropical regions of Africa, Asia, the Caribbean and South America [1]. It affects over 250 million people across 78 countries (primarily in Africa), causing an estimated 280,000 to 500,000 deaths annually and 3.3 million disability-adjusted life years each year [2]. Three main species of schistosomes infect humans: *S. mansoni*, *S. haematobium* and *S. japonicum* and two minor ones such as *S. intercalatum* and *S. mekongi*, while animal schistosomes and hybrid forms occasionally also infect humans [1, 3]. Infection occurs through freshwater water contact allowing exposure to schistosome cercariae—the infectious stage of the parasite released from the infected intermediate snail host [2]. The cercariae penetrate the skin of mammalian hosts, where they grow into schistosomula that eventually become adult worms [2, 4]. In intestinal schistosomiasis (caused by the majority of the species), the worms reside inside the capillary network around the middle part of the gut, and in the urogenital form of the disease (caused by *S. haematobium*) around the bladder [2, 4]. The eggs are destined to be excreted into nature with faeces or urine to infect snails, but a large part are stranded in the body where injury is caused through immunological reactions, which in intestinal schistosomiasis take place in the liver where the eggs commonly end up, or in the urogenital form in the genital organs or the bladder resulting in kidney injury due to obstructing the urine flow [2, 4]. Acute schistosomiasis, most often seen in *S. japonicum* infections, may present as self-limiting hypersensitivity reactions, known as Katayama fever [5, 6]. Chronic infection is the major manifestation where intestinal schistosomiasis is characterized by abdominal pain and diarrhoea, with long-term complications including hepatic fibrosis with potential portal hypertension eventually leading to splenomegaly and bleeding from parallel blood flow through oesophageal varicose veins [2]. Urogenital schistosomiasis presents with dysuria and haematuria, potentially leading to renal failure and squamous cell carcinoma of the bladder. Due to the potential ectopic migration of schistosome eggs or larvae, other organs such as the central nervous system and respiratory tract may also be involved [2, 3].

Even if mass drug administration with praziquantel without individual diagnosis is the most important part of current control activities [1, 2], accurate and

timely diagnosis is crucial for elimination. The reason is that a general idea of schistosomiasis presence will always be needed, which is becoming increasingly difficult in areas of low endemicity where infection rates are lower, and clinical symptoms subtle or non-specific. For intestinal schistosomiasis, the reference standard for diagnosing schistosome infection is microscopic detection of eggs in stool samples using the Kato-Katz thick smear technique [2, 7, 8]. For urogenital schistosomiasis, the reference standard involves egg detection in urine after urine filtration [2, 8, 9]. These “gold standard” approaches have been available for decades, largely due to their simplicity and low cost. However, it is commonly recognized that the low sensitivity of this method presents a problem in low-intensity infection scenarios, while the reliability may be affected by daily variations in egg excretion [10]. Released schistosomal proteins in the blood (and eventually in the urine), including the circulating anodic antigen and the circulating cathodic antigen [11], can sometimes show false-positive rates [12, 13] and significant variability across different batches and versions has been reported [14, 15]. Serology detection of specific antibodies has excellent sensitivity; however, its main limitation is the inability to distinguish active from former infection [8] and there is also the potential for cross-reactivity with other helminths, leading to high false positives [16]. Multiple nucleic acid amplification techniques, including the polymerase chain reaction (PCR) and isothermal amplification have been developed and used for schistosomiasis diagnosis, demonstrating superior sensitivity to conventional microscopy, particularly in low-intensity infections [17, 18]. However, PCR-based methods involve complex procedures, costly equipment, and skilled personnel, making them impractical for resource-limited areas where schistosomiasis is endemic [17]; while loop-mediated isothermal amplification (LAMP) overcomes this obstacle and shows similar sensitivity to PCR [19].

LAMP has gained recognition as an efficient and rapid method for the early detection and accurate identification of specific nucleic acids from various organisms [19] and shown promise in diagnosing various infectious diseases, e.g., SARS-CoV-2 [20–23], toxoplasmosis [24–26], malaria [27–30] and schistosomiasis [31–33]. The source of the nucleic acid to be tested for can be blood, saliva, urine, stool, tissue and even environmental samples, such as water [34]. LAMP utilizes an enzyme derived from

the large fragment of *Bacillus stearothermophilus* DNA polymerase along with six specific primers to amplify eight conserved regions of the target gene. It enables DNA amplification without reliance on thermocycling or electrophoretic separation. This operational simplicity facilitates seamless integration into clinical diagnosis applications. Through the formation of a looped structure, it enables self-cycling amplification, significantly enhancing amplification efficiency [35]. All reagents are incubated in a single tube, and the isothermal amplification process generates substantial quantities of target DNA along with reaction by-products, including magnesium pyrophosphate, which enables rapid detection through either real-time turbidity monitoring or visual fluorescence assessment using SYBR Green I/Calcein-based colorimetric analysis [36]. Due to its rapid amplification, ease of operation, and simple detection, LAMP holds promise for clinical diagnostics and infectious disease surveillance, particularly in resource-limited settings without requiring complex equipment or specialized personnel [19].

Recent studies have further optimized LAMP technology through lyophilized reagents [37], microfluidic chips [38], rapid simplified DNA extraction [39, 40], multiplex LAMP [41] and integration with CRISPR/Cas12a [42], enhancing its portability, practicality and applicability.

To identify diagnostic tools recommended by the World Health Organization (WHO) for effective detection of Schistosomiasis, we conducted a systematic review and meta-analysis on the diagnostic performance of LAMP. This effort aimed to support the goal of eliminating schistosomiasis as a public health problem by 2030 [43].

Materials and methods

This review was conducted in accordance with the Preferred reporting items for systematic reviews and meta-analyses (PRISMA) guidelines [44] and registered in the International Prospective Register of Systematic Reviews (PROSPERO, no. CRD42025637486) to ensure that the protocol was publicly available prior to the analysis.

Search strategy

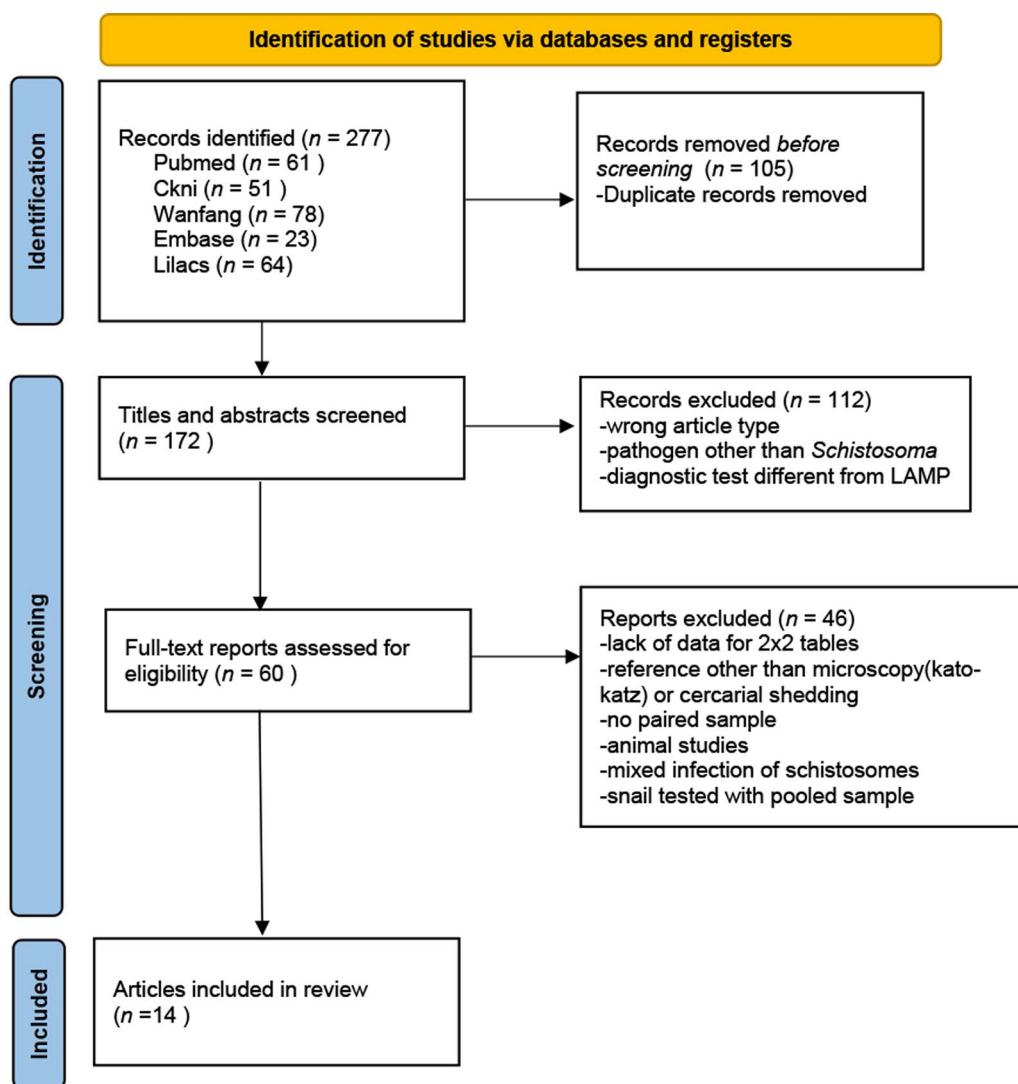
We searched PubMed, Cochrane Library, Latin American and Caribbean Literature on Health Sciences, Embase, China National Knowledge Infrastructure and Wanfang Data as of 10 May 2025 using of the search terms: "schistosom", "LAMP", "loop-mediated isothermal amplification", etc. A detailed description of the search strategy is available as supplementary information (see S1 Appendix). No limitations were set for language, survey, or reference type. The studies we retrieved were imported into

Endnote X9 (Clarivate Analytics, Philadelphia, USA) for management.

Eligibility criteria

The studies which complied with the following criteria were included: (1) Studies analyzing human or intermediate snail host samples; (2) Minimum sample size of 10 specimens; (3) Studies using LAMP or LAMP-based assays to detect *Schistosoma* infection; (4) The reference standards comprised microscopic examination for human specimens; crushing and microscopy or cercarial shedding for intermediate host diagnosis; (5) The data of 2×2 tables can be extracted.

Studies containing the following were excluded: (1) inappropriate article type like editorials, reviews and conference abstracts; (2) studies using pooled snail samples; (3) duplicate publications or extended analyses of previously published data; (4) cases of schistosomal co-infections; (5) composite reference standard.


Data collection and quality assessment

The following information was obtained from the reference papers: title, publication year, author(s), country/region, sample, reference standard, LAMP applied, species, target, DNA purification method, the number of true positives (TP), false positives (FP), false negatives (FN), true negatives (TN), and the total number of samples (N). If one article contained data obtained from different LAMP techniques, sample type or *Schistosoma* species, each set was considered a separate study.

The quality and risk of bias of the included studies were evaluated using the Quality Assessment of Diagnostic Accuracy Studies 2 tool (QUADAS-2) tool [45], a recommended tool for assessing diagnostic accuracy in systematic reviews. This tool consists of eleven criteria in four sections: patient selection, index test, reference standard, flow and timing. Each section was assessed using specific questions and rated as "High", "Unclear", or "Low" for risk of bias. If all signalling questions within a section were answered favourably, the corresponding risk of bias for that section was considered low. RevMan 5.4 (Review Manager; The Cochrane Collaboration, Copenhagen, Denmark) was used to analyze the QUADAS-2 result.

Statistical analysis

We used STATA 18.0 (StataCorp LLC, College Station, USA) with the bivariate-effect models for all statistical analyses and we calculated the pooled sensitivity, specificity, positive likelihood ratio (PLR), negative likelihood ratio (NLR) and diagnostic odds ratio (DOR). The accuracy of the results was assessed by the area under the summary receiver operating characteristic (SROC) curve

Fig. 1 PRISMA flowchart of study selection

(AUC). The publication bias was also evaluated using Deeks'funnel plot, and a P value of >0.1 indicated the absence of publication bias [46]. LAMP is a binary test with either a positive or negative result, thereby precluding the possibility of threshold bias. To assess heterogeneity, we employed the Cochran's Q test and the I^2 statistic. If the I^2 statistic exceeded 50% and the P -value was less than 0.1, then it would indicate substantial heterogeneity among the included studies. The univariable meta-regression and subgroup analyses were conducted to investigate potential sources of heterogeneity in the diagnostic performance of LAMP for Schistosomiasis detection. Subgroup analyses were done to examine LAMP technique performance across different regions, species, samples and more. The univariate random-effects model

was employed to estimate sensitivities and specificities for subgroups containing fewer than four studies, as bivariate models fail to converge with limited sample sizes. Comparison of AUC for *S. mansoni* sample classification was conducted using a z-test, with a predetermined significance level of $P < 0.05$.

Results

Study selection

With the screening of titles and abstracts for all identified studies independently performed by two reviewers, a total of 277 records were initially identified through the database searches. After removing 105 duplicates, 46 records were excluded due to incompatible article/research types, while an additional 66 were eliminated

Table 1 Basic information and characteristics of the included studies

Author, year	Region	Target	Purification	Species	Sample	Reference	Detection	Method
Yu et al., [57]	China	SiR2	Phenol/chlor	<i>S. japonicum</i>	<i>O. hupensis</i>	Cercaria	SGI/Gel	Conv. LAMP
Li et al., [42]	China	SiR2	Kit	<i>S. japonicum</i>	<i>O. hupensis</i>	Cercaria	T	Conv. LAMP
Li et al., [42]	China	SiR2	Kit	<i>S. japonicum</i>	<i>O. hupensis</i>	Cercaria	RT-EG	LAMP-CRISPER
Xu et al., [58]	China	SiR2	Phenol/chlor	<i>S. japonicum</i>	Human serum	Kato-Katz	SGI	Conv. LAMP
Xu et al., [31]	China	SiR2	Phenol/chlor	<i>S. japonicum</i>	Human serum	Kato-Katz	SGI	Conv. LAMP
Mwangi et al., [34]	Kenya	Sm1-7	Kit	<i>S. mansoni</i>	Human stool	Kato-Katz	SGI/Ge1	Conv. LAMP
Gandasegui et al., [59]	Brazil	SmMIT	Phenol/chlor	<i>S. mansoni</i>	Human stool	Kato-Katz	SGI/Ge1	SmMIT-LAMP
Gandasegui et al., [59]	Brazil	SmMIT	Phenol/chlor	<i>S. mansoni</i>	Human stool	Kato-Katz	SGI/Ge1	SmMIT-LAMP
Gandasegui et al., [59]	Brazil	SmMIT	Phenol/chlor	<i>S. mansoni</i>	Human stool	Kato-Katz	SGI/Ge1	SmMIT-LAMP
Gomes et al., [60]	Brazil	SmITS1	Phenol/chlor	<i>S. mansoni</i>	Human stool	Kato-Katz	SGI	SmITS1-LAMP
Allam et al., [51]	Egypt	Sm1-7	Kit	<i>S. mansoni</i>	Human stool	Kato-Katz	SGI/Ge1	Conv. LAMP
Allam et al., [51]	Egypt	Sm1-7	Kit	<i>S. mansoni</i>	Human urine	Kato-Katz	SGI/Ge1	Conv. LAMP
Price et al., [54]	Zambia	Sm1-7	Kit	<i>S. mansoni</i>	Human urine	Kato-Katz	SGI/Ge1	Conv. LAMP
Price et al., [54]	Zambia	Sm1-7	Kit	<i>S. mansoni</i>	Human urine	Microscopy	SGI/Ge1	LAMP-PURE
Fernández-Soto et al., [61]	Sub-Saharan	SmMIT	Kit	<i>S. mansoni</i>	Human urine	Kato-Katz	SGI/Ge1	SmMIT-LAMP
Bayoumi et al., [62]	Egypt	IGS	Kit	<i>S. haematobium</i>	Human urine	Microscopy	SGI	Conv. LAMP
Gandasegui et al., [40]	Sub-Saharan	IGS	LAMPellet-kit	<i>S. haematobium</i>	Human urine	Microscopy	SGI/Ge1	LAMPellet
Gandasegui et al., [63]	Cent. Angola	IGS	Kit	<i>S. haematobium</i>	Human urine	Microscopy	T	Conv. LAMP
Gandasegui et al., [63]	Cent. Angola	IGS	Kit	<i>S. haematobium</i>	Human urine	Microscopy	SGI	Conv. LAMP
Gandasegui et al., [63]	Cent. Angola	IGS	LAMPellet-kit	<i>S. haematobium</i>	Human urine	Microscopy	T	SmMIT-LAMP
Gandasegui et al., [63]	Cent. Angola	IGS	LAMPellet-kit	<i>S. haematobium</i>	Human urine	Microscopy	SGI	SmMIT-LAMP
Gandasegui et al., [63]	Cent. Angola	IGS	Kit	<i>S. haematobium</i>	Human urine	Microscopy	SGI	Conv. LAMP
Gandasegui et al., [63]	Cent. Angola	IGS	LAMPellet-kit	<i>S. haematobium</i>	Human urine	Microscopy	SGI	SmMIT-LAMP
Salas-Coronas et al., [64]	Sub-Saharan	NA	Kit	<i>S. haematobium</i>	Human urine	Microscopy	SGI	Conv. LAMP

Sm1-7 *Schistosoma mansoni* 121 base pair arranged in tandem repeated sequence, *SmMIT* *S. mansoni* mitochondrial mini-satellite DNA region, *SmITS1* internal transcribed spacer 1 ribosomal gene of *S. mansoni*; *IGS* ribosomal intergenic spacer DNA, *LAMP-PURE* loop-mediated isothermal amplification procedure for ultra rapid extraction, Conv. LAMP conventional LAMP, SGI SYBR Green I, Gel Electrophoresis, T turbidity; RT-EG real-time EvaGreen fluorescence detection

based on irrelevant research subjects and/or methods. Following full-text review, 46 more records were excluded leaving 14 articles, 24 studies and 2,962 test samples. A flowchart of the research process is shown in Fig. 1. The data were extracted from these 14 articles, which encompass studies conducted across various countries categorized by species into (i) *S. japonicum*, (ii) *S. mansoni* and (iii) *S. haematobium*. Studies on *S. mekongi* and *S. intercalatum* were excluded due to insufficient amount of available research. The collected samples included (i) human serum, (ii) stool, (iii) urine and (iv) snails. The reference standards employed were classical microscopic egg detection or cercarial shedding methods. Based on the sample sources, the data were further divided into (i) human and (ii) snail categories. Additionally, to explore potential factors that could optimize LAMP detection performance and to investigate the causes of high heterogeneity, we documented the country/region, DNA purification methods, LAMP protocols and amplification targets (Table 1).

Literature quality and risk of bias

There was an unclear risk of bias according to the QUA-DAS-2 assessment (Fig. 2). Most studies did not involve a case-control design, but the lack of clear reporting on consecutive or random sampling in Patient Selection led to an unclear risk of bias with respect to this step. Additionally, most studies did not properly apply blinding when interpreting the results of the reference standard and index test, introducing further bias in index test and reference standard. In the index test domain, the risk of bias related to the threshold effect could not be clarified, as LAMP results were binary and lack a specific positive threshold. One study had partial loss to follow-up and was marked as having a high risk of bias in Flow and Timing.

Diagnostic performance of the LAMP assay

We calculated the pooled estimates, as illustrated in Figs. 3 and 4. The pooled sensitivity and specificity of LAMP were 0.90 (95% CI: 0.80–0.95) and 0.82 (95% CI: 0.60–0.93), respectively. Additionally, the pooled PLR

Fig. 2 The summary of the risk of bias and applicability concerns of the included studies

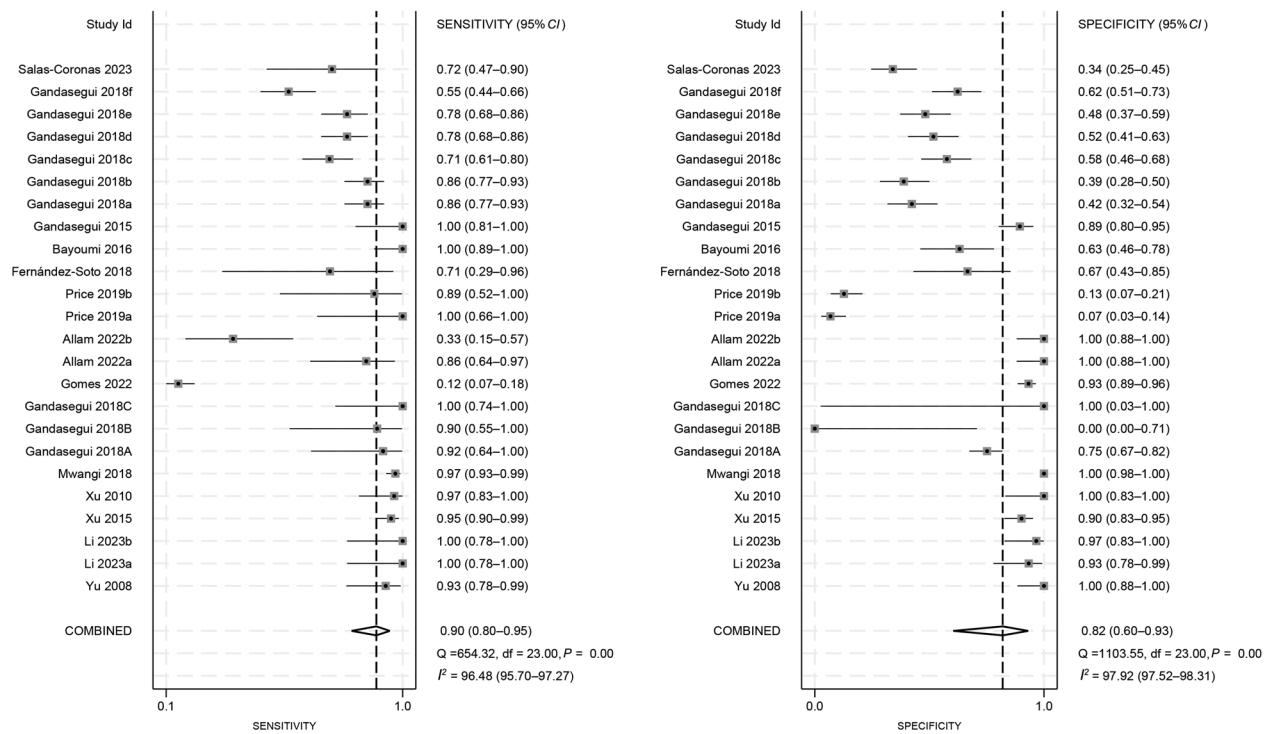
and NLR were 4.98 (95% CI: 2.01–12.29) and 0.13 (95% CI: 0.06–0.26), respectively. The pooled DOR was 39 (95% CI: 10–158). Notably, significant heterogeneity was observed across the pooled estimates ($I^2 > 50\%$, $P < 0.05$).

The accuracy evaluation results of the diagnostic techniques are presented in Fig. 5. The AUC for LAMP was 0.93 (95% CI: 0.91–0.95), demonstrating excellent diagnostic performance for the detection of schistosomiasis.

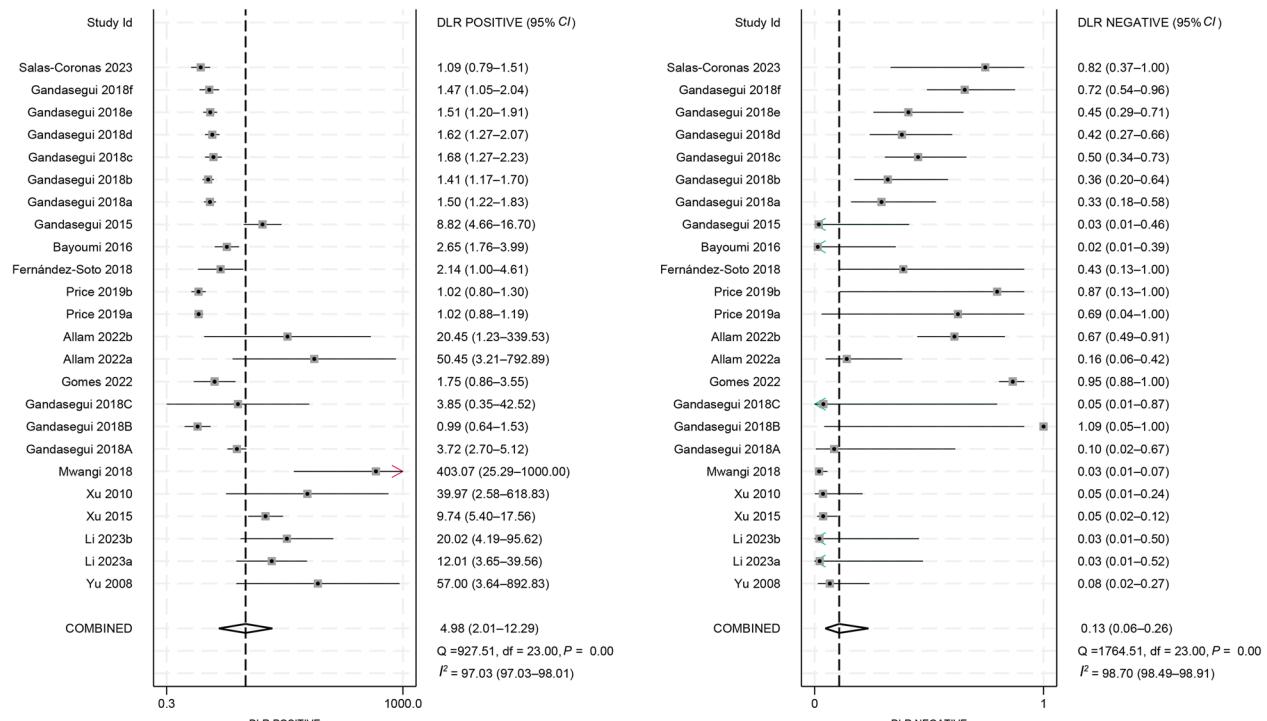
Influence analysis

The influence analysis indicated that the included studies showed good stability, and most studies did not significantly alter the pooled DOR, with estimates ranging from 7.23 to 10.56 (Fig. 6). However, one study was identified as having a potential impact on the overall effect size of the LAMP diagnostic test. Nevertheless, even after removing this study, substantial heterogeneity persisted ($I^2 > 50\%$), suggesting that multiple other studies likely contributed to the observed heterogeneity.

Heterogeneity analysis


Subgroup analysis was performed to investigate potential sources of heterogeneity. As shown in Table 2, the included samples were stratified based on Purification method, Species, Sample type and Detection target. The subgroup analysis of *S. japonicum* revealed lower heterogeneity, higher pooled effect sizes and more reliable diagnostic accuracy. Similar trends were observed in subgroups involving snail samples. However, no significant differences were found within the subgroups categorized by purification methods and detection targets, and substantial heterogeneity persisted in these groups.

Additionally, among the included studies, *S. mansoni* was the only species with both sample types (urine and stool) and different genetic targets evaluated. Therefore, a separate analysis was conducted for this species to provide recommendations regarding sample and target selection. As shown in Fig. 7 and z-test result, the use of stool samples demonstrated significantly superior diagnostic value in LAMP for *S. mansoni* (AUC=0.97, $Z=9.79$, $P < 0.001$), which aligns with the pathogenic mechanism in this case. Furthermore, the *S. mansoni* 121 bp tandemly arranged repeated sequence (Sm1-7) exhibited a higher DOR compared to the *S. mansoni* mitochondrial minisatellite DNA region (SmMIT) target (Table 3). However, due to the limited number of studies and the persistent high heterogeneity within subgroups, these findings should be interpreted with caution and warrant further investigation.


The sensitivity and specificity of LAMP were analyzed based on various study-level covariates, including purification, species, sample type, detection method, and target gene. For sensitivity, none of the covariates demonstrated statistically significant heterogeneity, as indicated by the overlapping confidence intervals and lack of statistical significance markers. However, for specificity, species ($P < 0.05$) and sample type ($P < 0.05$) were found to be significant moderators, suggesting that differences in these factors may contribute to variability in LAMP specificity across studies. The effect estimates and confidence intervals for each covariate are visualized in Fig. 8. These findings highlight the potential impact of sample type and species variation on LAMP specificity and suggest that further standardization in diagnostic protocols may be necessary to improve test reliability.

Publication bias

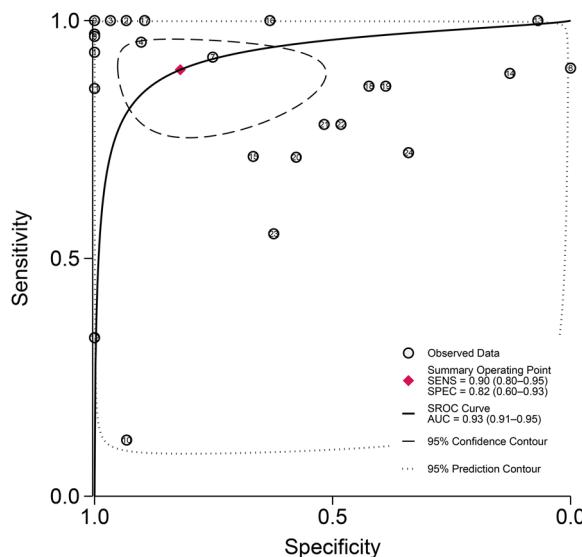
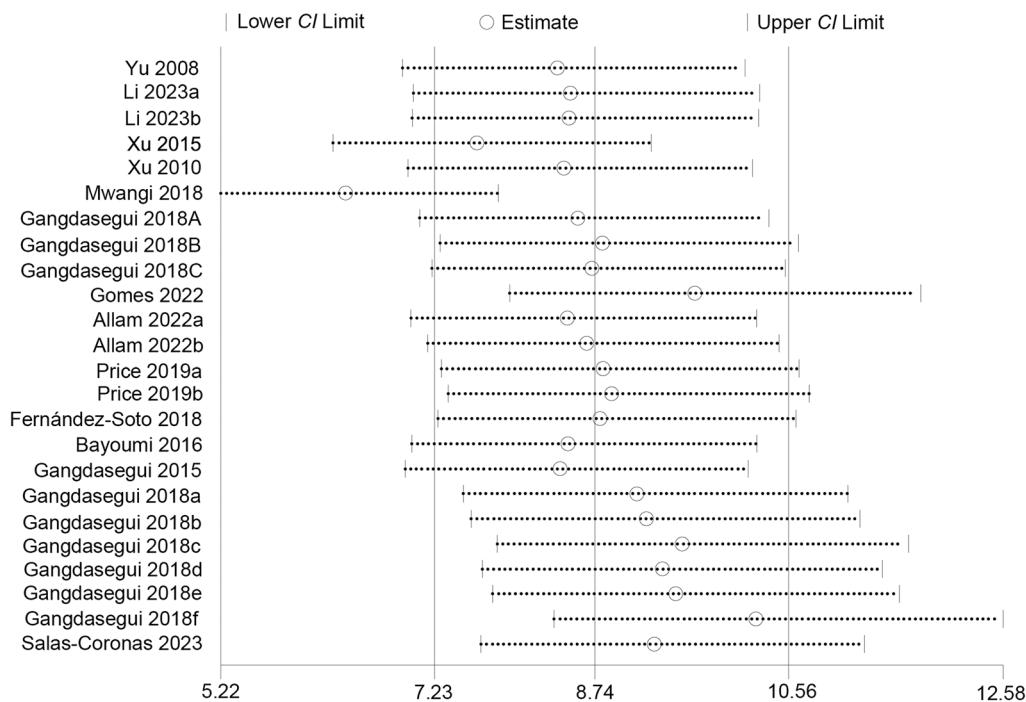

Deeks'funnel plot asymmetry test was employed to assess potential publication bias across the included studies. The statistical analysis, as presented in Fig. 9,

Fig. 3 Forest plots for the pooled sensitivity and specificity of loop-mediated isothermal amplification in the diagnosis of schistosomiasis

Fig. 4 Forest plots for the pooled positive and negative likelihood ratio of loop-mediated isothermal amplification in the diagnosis of schistosomiasis

Fig. 5 Summary receiver operating characteristic curves for loop-mediated isothermal amplification (LAMP) in the diagnosis of schistosomiasis


demonstrated no significant evidence of publication bias in the LAMP studies ($P > 0.05$).

Discussion

Employing accurate diagnostic methods with acceptable sensitivity and specificity for proper surveillance is of utmost importance in assessing the effectiveness of all endeavours to combat schistosomiasis [8]. This study evaluated the performance of LAMP for the diagnosis of schistosomiasis, demonstrating its high diagnostic capability. LAMP technology demonstrates favorable performance in sensitivity and NLR, making it suitable as a primary screening tool to effectively exclude non-diseased individuals and reduce missed diagnoses. The PLR and DOR indicate its certain prompting role for the disease, especially in resource-limited settings where it can serve as a rapid diagnostic method.

This study for the first time conducted a comprehensive meta-analysis on the diagnostic performance of LAMP for multiple common pathogenic schistosomes. We not only quantified important indicators such as the combined sensitivity and specificity of LAMP, but also deeply explored the factors that may affect LAMP detection, providing data support for the application of LAMP in this disease and the selection of schistosome detection methods.

To explore further optimization of LAMP for the diagnosis of schistosomiasis, we analyzed the impact of various factors on LAMP performance. Subgroup regression analysis highlighted the potential influence of sample type and species variation on LAMP specificity,

Fig. 6 Influence analysis of the included studies

Table 2 Subgroup analysis results of loop-mediated isothermal amplification in *Schistosoma* infections

Variable	Studies included	Sensitivity (95% CI range) [$I^2\%$]	Specificity(95% CI range) [$I^2\%$]	PLR(95% CI range) [$I^2\%$]	NLR(95% CI range) [$I^2\%$]
Species					
<i>S. japonicum</i>	5	0.96 (0.92–0.98) [0.0]	0.95 (0.87–0.99) [38.7]	21.21 (6.84–65.77) [0.0]	0.04 (0.02–0.09) [0.0]
<i>S. mansoni</i>	10	0.87 (0.62–0.97) [96.9]	0.88 (0.30–0.99) [99.4]	7.58 (0.61–93.92) [98.2]	0.14 (0.04–0.50) [96.8]
<i>S. haematobium</i>	9	0.85 (0.70–0.93) [86.6]	0.55 (0.43–0.67) [89.2]	1.90 (1.33–2.71) [76.3]	0.28 (0.12–0.65) [81.9]
Sample					
Snail	3*	0.97 (0.89–1.00) [29.6]	0.97 (0.91–0.99) [29.6]	16.76 (6.84–41.06) [0.0]	0.06 (0.02–0.18) [0.0]
Human (general)	21	0.87 (0.76–0.94) [96.1]	0.76 (0.51–0.90) [97.6]	3.61 (1.56–8.37) [95.5]	0.17 (0.08–0.35) [98.2]
Human serum	2*	0.96 (0.91–0.98) [0.0]	0.92 (0.85–0.96) [73.3]	10.85 (5.0–23.48) [7.1]	0.05 (0.02–0.11) [0.0]
Human stool	6	0.89 (0.54–0.98) [98.7]	0.98 (0.25–1.00) [99.4]	42.12 (0.32–5612.73) [99.1]	0.11 (0.02–0.63) [99.6]
Human urine	13	0.82 (0.70–0.90) [83.8]	0.53 (0.33–0.72) [94.9]	1.76 (1.17–2.63) [78.5]	0.33 (0.20–0.56) [56.0]
Purification					
Phenol/chloroform	7	0.92 (0.66–0.98) [98.7]	0.93 (0.54–0.99) [99.1]	13.09 (1.36–125.85) [98.8]	0.09 (0.02–0.45) [99.7]
Kit	13	0.90 (0.79–0.96) [90.7]	0.80 (0.43–0.96) [97.9]	4.61 (1.18–18.08) [95.9]	0.12 (0.05–0.29) [93.6]
LAMPellet	4	0.83 (0.47–0.96) [90.6]	0.68 (0.49–0.82) [90.5]	2.56 (1.19–5.53) [87.1]	0.25 (0.05–1.25) [91.9]
Detection					
SGI/Ge1	20	0.89 (0.77–0.95) [96.4]	0.83 (0.56–0.95) [8.1]	5.14 (1.68–15.69) [96.9]	0.14 (0.06–0.30) [98.5]
T	3*	0.80 (0.74–0.86) [84.3]	0.57 (0.49–0.64) [92.7]	2.11 (1.23–3.61) [84.5]	0.35 (0.17–0.73) [67.3]

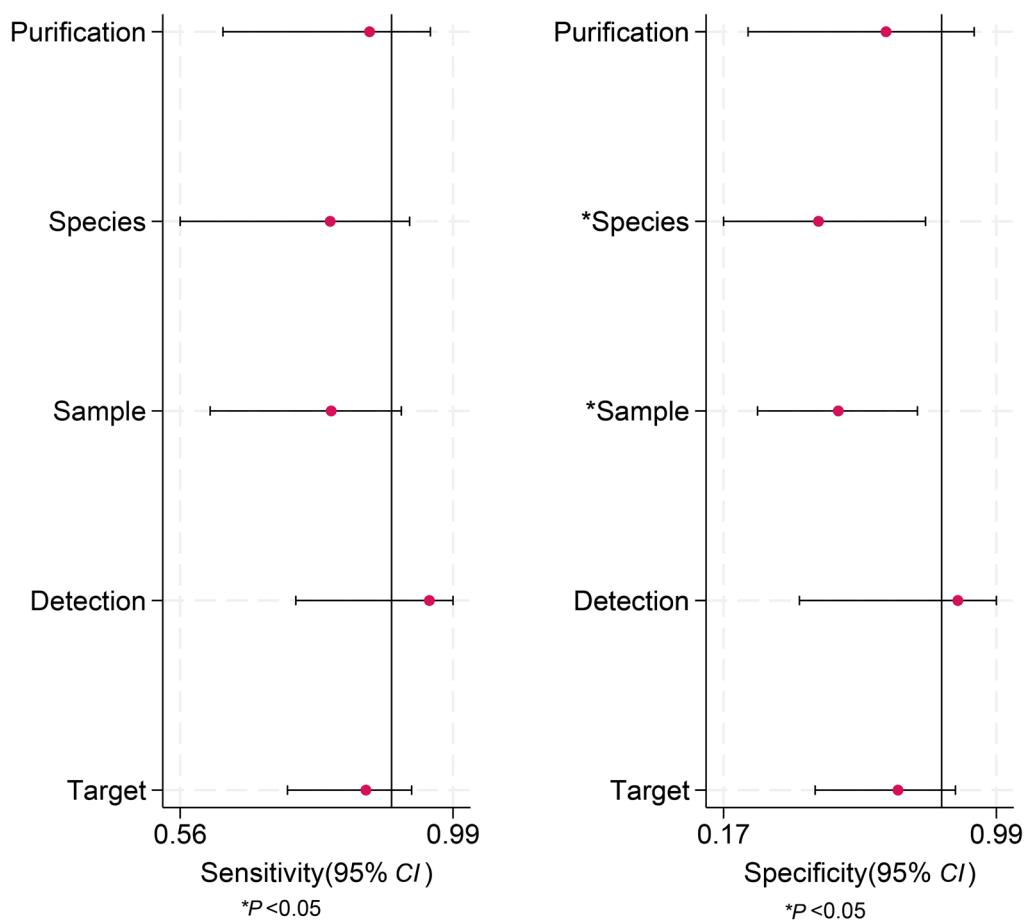
* Univariate random-effects model was used to estimate sensitivities and specificities for subgroups with less than four included studies, as bivariate models do not converge when the sample size is small; CI confidence interval; I^2 the proportion of the variance in observed effect due to variance in true effects rather than sampling error, PLR positive likelihood ratio, NLR negative likelihood ratio, LAMPellet the rapid-heat LAMPellet methodology, SGI SYBR green I, Gel electrophoresis, T turbidity

suggesting that further standardization of diagnostic protocols may be necessary to enhance test reliability.

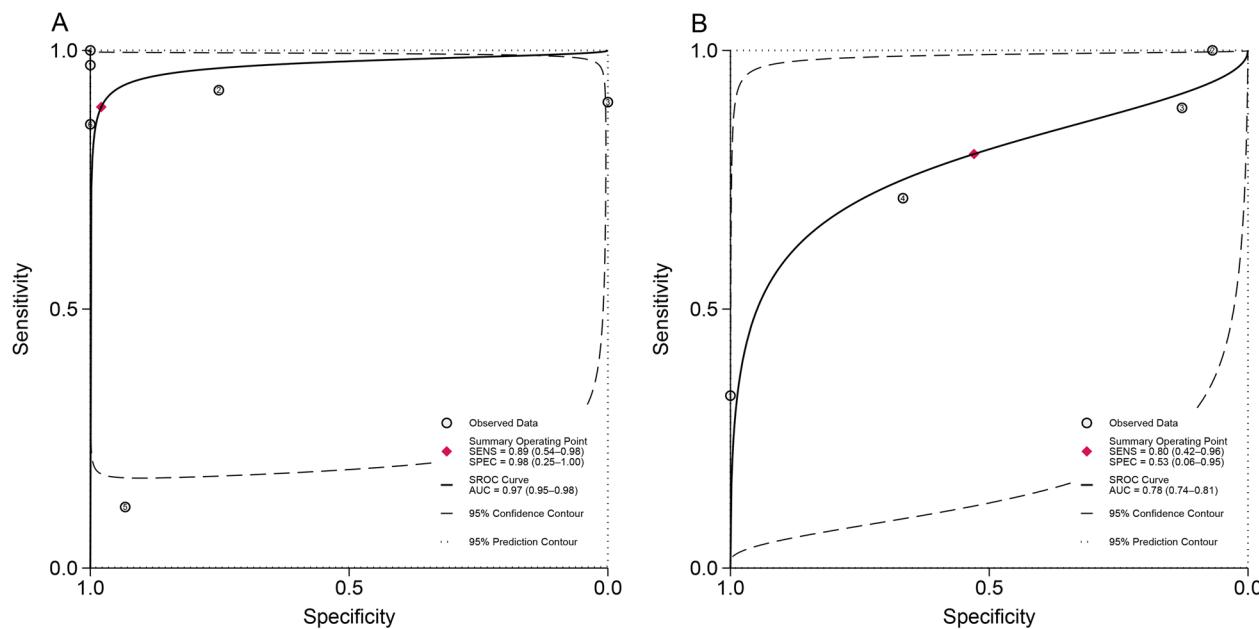
The utilization of diverse sample types, particularly within the same study protocol, may represent a significant heterogeneity in diagnostic performance [47]. Previous studies have demonstrated significant disparities in detection rates between stool and serum samples when analyzed by quantitative PCR [48]. Due to the limited number of studies included, only snail and serum samples were evaluated for *S. japonicum*, with no assessment of stool samples. For *S. mansoni*, studies were available for both stool and urine samples, while for *S. haematobium*, only urine samples were examined. Among these, LAMP performance was optimal and exhibited the least heterogeneity when using intermediate host snail samples, likely due to the higher concentration of DNA extracted from snails compared to human samples such as stool and other bodily fluids. Studies have demonstrated that somatic DNA fragments from both *S. haematobium* and *S. mansoni* can be detected in urine samples [49], with extraction possible from filter paper used for urine filtration and subsequent drying, thereby eliminating the need for stool sample collection and processing [50]. In the analysis of *S. mansoni*, stool samples yielded superior results compared to urine samples. As an intestinal-dwelling schistosome, the lower concentration of cell-free DNA in urine samples may account for the reduced sensitivity of LAMP in urine-based detection

[51]. Additionally, potential contamination or DNA degradation during the freezing and storage of urine samples could further compromise the detection efficacy.

Despite being one of the most extensively studied neglected tropical diseases, the clinical implementation of LAMP for schistosomiasis diagnosis remains restricted, with current applications primarily confined to research scenarios rather than routine clinical practice [52]. It should be noted that LAMP presents several important disadvantages: unsuitability for cloning, highly constrained primer design, and elevated carry-over contamination risk [53]. To enhance field applicability and optimize DNA extraction from field samples, several innovative methods have been developed alongside conventional commercial kits, including LAMP-Procedure for Ultra Rapid Extraction (LAMP-PURE) [54, 55] and the Rapid-Heat LAMPellet assay [40]. Although the extraction process may occasionally yield false-negative results, the LAMP-PURE kit enables DNA extraction within minutes, making it highly suitable for rapid testing in field settings or resource-limited areas [54]. Notably, it yields significantly higher DNA concentrations compared to standard extraction methods [55]. The Rapid-Heat LAMPellet method simplifies DNA extraction by using a straightforward heating step directly on urine samples, eliminating the need for complex DNA purification. This cost-effective approach is particularly advantageous for large-scale screening programmes.


Table 3 Subgroup analysis in *Schistosoma mansoni* infections

Variable	Studies included	Sensitivity (95% CI range) [$I^2\%$]	Specificity (95% CI range) [$I^2\%$]	PLR (95% CI range) [$I^2\%$]	NLR (95% CI range) [$I^2\%$]	DOR (95% CI range) [$I^2\%$]
Target						
Sm1-7	5	0.91 (0.62–0.99) [94.2]	1.0 (0.03–1.00) [99.2]	360.53 (0.03–4.5e +06) [97.4]	0.09 (0.02–0.47) [92.7]	4097.61 (0.56–3.0e +07) [100.0]
SmMIT	4	0.91 (0.76–0.97) [29.6]	0.73 (0.65–0.80) [67.6]	3.35 (2.53–4.43) [82.8]	0.13 (0.05–0.35) [51.1]	25.72 (8.39–78.83) [95.0]
Sample						
Stool	6	0.89 (0.54–0.98) [98.7]	0.98 (0.25–1.00) [99.4]	42.12 (0.32–5612.73) [99.1]	0.11 (0.02–0.63) [99.6]	377.03 (1.37–1.0e +05) [100.0]
Urine	4	0.80 (0.42–0.96) [80.9]	0.53 (0.06–0.95) [97.5]	1.70 (0.48–6.03) [47.1]	0.38 (0.15–0.94) [78.9]	4.49 (0.69–29.37) [99.2]


CI confidence interval, I^2 the proportion of the variance in observed effect due to variance in true effects rather than sampling error, PLR positive likelihood ratio, NLR negative likelihood ratio, DOR diagnostic odds ratio

Our study has several limitations. Firstly, the limited number of studies not only potentially compromises the reliability of our findings but also precludes a comprehensive analysis of *S. mekongi* and *S. intercalatum*. Secondly, the high heterogeneity observed in our meta-analysis was not sufficiently explained by subgroup

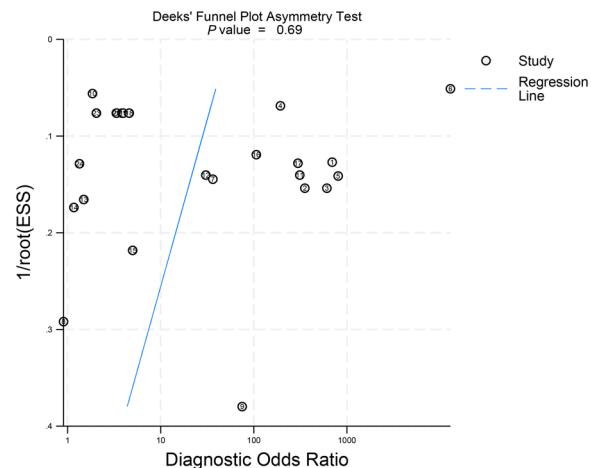

analysis. This persistent heterogeneity may be attributed to individual variations in patient characteristics, such as infection intensity, gender, age, sample collection methods, and researcher practices. Furthermore, the use of conventional microscopy as the gold standard might have led to an underestimation of the new method's diagnostic

Fig. 7 Comparison of diagnostic performance of different samples infected with *Schistosoma mansoni*. **A:** human stool sample; **B:** human urine sample

Fig. 8 Univariable meta-regression and subgroup analyses for loop-mediated isothermal amplification (LAMP) in the diagnosis of schistosomiasis

Fig. 9 Deeks' funnel plot of publication bias

performance. Microscopy's limited sensitivity in low-intensity infections may result in false-negative cases, leading to misclassification of true positives as false positives in LAMP detection and consequently underestimating the new method's specificity. This misclassification also reduces the positive likelihood ratio and DOR. These results do not reflect inherent limitations of the new method but rather the gold standard's deficiencies. It is recommended to employ more sensitive alternative reference standards or combined reference standards to provide more accurate diagnostic benchmarks, mitigating the performance underestimation caused by the current

gold standard's limitations. Additionally, the application of Latent Class Models [56] could provide unbiased estimates of sensitivity and specificity in the absence of a definitive gold standard. Therefore, further large-scale studies with diverse samples and species in field settings, accompanied by cost-effectiveness analyses are recommended to provide more comprehensive insights.

Conclusions

In summary, LAMP demonstrates strong potential as a rapid, sensitive, and specific diagnostic tool for schistosomiasis in resource-limited settings. LAMP shows high diagnostic value, particularly for detecting *S. japonicum* infection and snail samples. It exhibits strong sensitivity and negative likelihood ratios, making it suitable for initial screening. This study provides a solid basis for the inclusion of LAMP technology in the WHO 2030 plan for the elimination of schistosomiasis.

Abbreviations

LAMP	Loop-mediated isothermal amplification
CI	Confidential interval
PLR	Positive likelihood ratio
NLR	Negative likelihood ratio
DOR	Diagnostic odds ratio
SROC	Summary receiver operating characteristic
AUC	The area under the curve
PCR	Polymerase chain reaction
PRISMA	Preferred reporting items for systematic reviews and meta-analyses
QUADAS-2	Quality assessment of diagnostic accuracy studies 2 tool
LAMP-PURE	LAMP-Procedure for Ultra Rapid Extraction
SmMIT	<i>Schistosoma mansoni</i> Mitochondrial mini-satellite DNA region
Sm1-7	<i>S. mansoni</i> 121 Bp tandemly arranged repeated sequence

Supplementary Information

The online version contains supplementary material available at <https://doi.org/10.1186/s40249-025-01346-0>.

Additional file 1

Acknowledgements

Not applicable.

Author contributions

Conception and Design: Zhiqiang Qin and Shizhu Li. Search strategy: Xinjie Zhou, Jiajia Li and Jiayin Qiu. Study selection: Xinjie Zhou, Jiajia Li, Jiayin Qiu. Data extraction: Xinjie Zhou, Jiajia Li and Jiayin Qiu. Data management: Xinjie Zhou, Jiajia Li, Jiayin Qiu, Ting Feng, Chao Lv, Wangping Deng and Jing Xu. Manuscript drafting: Xinjie Zhou. Manuscript revision and review: Robert Bergquist and Zhiqiang Qin. All authors have approved the final draft and agreed to the published version of the manuscript.

Funding

This work was supported by the Key Discipline Project (GWVI-11.1-12) of the Three-Year Action Plan for the Construction of Shanghai Public Health System (2023–2025).

Data availability

Not applicable.

Declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Author details

¹National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention; Chinese Center for Tropical Diseases Research; National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases; Key Laboratory on Parasite and Vector Biology, National Health Commission; WHO Collaborating Centre for Tropical Diseases; National Center for International Research on Tropical Diseases, Ministry of Science and Technology, Shanghai, 200025, China. ²UNICEF/UNDP/World Bank/WHO Special Programme for Research and Training in Tropical Diseases (TDR), World Health Organization, Geneva, Sweden.

Received: 23 April 2025 Accepted: 8 July 2025

Published online: 31 July 2025

References

1. Lo NC, Bezerra FSM, Colley DG, Fleming FM, Homeida M, Kabatereine N, et al. Review of 2022 WHO guidelines on the control and elimination of schistosomiasis. *Lancet Infect Dis*. 2022;22(11):e327–35.
2. Colley DG, Bustinduy AL, Secor WE, King CH. Human schistosomiasis. *The Lancet*. 2014;383(9936):2253–64.
3. Buonfrate D, Ferrari TCA, AkimAdegnika A, Russell Stothard J, Gobbi FG. Human schistosomiasis. *Lancet*. 2025;405(10479):658–70.
4. WHO. Schistosomiasis: progress report 2001–2011, strategic plan 2012–2020. 2013. <https://www.who.int/publications/item/978941503174>. Accessed 1 Apr 2025.
5. Lambertucci JR. Acute schistosomiasis: clinical, diagnostic and therapeutic features. *Rev Inst Med Trop Sao Paulo*. 1993;35(5):399–404.
6. Ross AG, Vickers D, Olds GR, Shah SM, McManus DP. Katayama syndrome. *Lancet Infect Dis*. 2007;7(3):218–24.
7. Katz N, Chaves A, Pellegrino J. A simple device for quantitative stool thick-smear technique in schistosomiasis mansoni. *Rev Inst Med Trop Sao Paulo*. 1972;14(6):397–400.
8. Ally O, Kanoi BN, Ochola L, Nyanjom SG, Shiluli C, Misinzo G, et al. Schistosomiasis diagnosis: challenges and opportunities for elimination. *PLoS Negl Trop Dis*. 2024;18(7): e0012282.
9. Mott KE, Baltes R, Bambagha J, Baldassini B. Field studies of a reusable polyamide filter for detection of *Schistosoma haematobium* eggs by urine filtration. *Tropenmed Parasitol*. 1982;33(4):227–8.
10. Tabios IKB, Sato MO, Tantengco OAG, Fornillos RJC, Kirinoki M, Sato M, et al. Diagnostic performance of parasitological, immunological, molecular, and ultrasonographic tests in diagnosing intestinal schistosomiasis in fieldworkers from endemic municipalities in the Philippines. *Front Immunol*. 2022;13: 899311.
11. Lindholz CG, Favero V, Verissimo CM, Candido RRF, de Souza RP, Dos Santos RR, et al. Study of diagnostic accuracy of Helmintex, Kato-Katz, and POC-CCA methods for diagnosing intestinal schistosomiasis in Candeal, a low intensity transmission area in northeastern Brazil. *PLoS Negl Trop Dis*. 2018;12(3): e0006274.
12. Hoekstra PT, Madinga J, Lutumba P, van Grootveld R, Brien EAT, Corstjens P, et al. Diagnosis of schistosomiasis without a microscope: evaluating circulating antigen (CCA, CAA) and DNA detection methods on banked samples of a community-based survey from DR Congo. *Trop Med Infect Dis*. 2022;7:10.
13. Casacuberta-Partal M, Beenakker M, de Dood CJ, Hoekstra PT, Kroon L, Kornelis D, et al. Specificity of the point-of-care urine strip test for schistosoma circulating cathodic antigen (POC-CCA) tested in non-endemic pregnant women and young children. *Am J Trop Med Hyg*. 2021;104(4):1412–7.
14. Peralta JM, Cavalcanti MG. Is POC-CCA a truly reliable test for schistosomiasis diagnosis in low endemic areas? The trace results controversy. *PLoS Negl Trop Dis*. 2018;12(11): e0006813.
15. Straily A, Kavere EA, Wanja D, Wiegand RE, Montgomery SP, Mwaki A, et al. Evaluation of the point-of-care circulating cathodic antigen assay for monitoring mass drug administration in a *Schistosoma mansoni* control program in Western Kenya. *Am J Trop Med Hyg*. 2021;106(1):303–11.
16. Hoermann J, Kuenzli E, Schaefer C, Paris DH, Bühler S, Odermann P, et al. Performance of a rapid immuno-chromatographic test (*Schistosoma* ICT IgG-IgM) for detecting *Schistosoma*-specific antibodies in sera of endemic and non-endemic populations. *PLoS Negl Trop Dis*. 2022;16(5): e0010463.
17. Weerakoon KG, Gordon CA, McManus DP. DNA diagnostics for schistosomiasis control. *Trop Med Infect Dis*. 2018;3:3.
18. Meurs L, Brien E, Mbow M, Ochola EA, Mboup S, Karanja DM, et al. Is PCR the next reference standard for the diagnosis of *Schistosoma* in stool? A comparison with microscopy in Senegal and Kenya. *PLoS Negl Trop Dis*. 2015;9(7): e0003959.
19. Parida M, Sannarangaiah S, Dash PK, Rao PV, Morita K. Loop mediated isothermal amplification (LAMP): a new generation of innovative gene amplification technique; perspectives in clinical diagnosis of infectious diseases. *Rev Med Virol*. 2008;18(6):407–21.
20. Chaouch M. Loop-mediated isothermal amplification (LAMP): An effective molecular point-of-care technique for the rapid diagnosis of coronavirus SARS-CoV-2. *Rev Med Virol*. 2021;31(6): e2215.
21. Janíková M, Hodosy J, Boor P, Klempa B, Celeg P. Loop-mediated isothermal amplification for the detection of SARS-CoV-2 in saliva. *Microb Biotechnol*. 2021;14(1):307–16.
22. Kashir J, Yaqinuddin A. Loop mediated isothermal amplification (LAMP) assays as a rapid diagnostic for COVID-19. *Med Hypotheses*. 2020;141: 109786.
23. Urrutia-Cabrera D, Liou RH, Wang JH, Chan J, Hung SS, Hewitt AW, et al. Comparative analysis of loop-mediated isothermal amplification (LAMP)-based assays for rapid detection of SARS-CoV-2 genes. *Sci Rep*. 2021;11(1):22493.
24. Kheirandish F, Fallahi S, Mahmoudvand H, Araban A, Anbari K, Rouzbahani AK, et al. A loop-mediated isothermal amplification (LAMP) assay for

detection of *Toxoplasma gondii* infection in women with spontaneous abortion. *Arch Microbiol.* 2021;203(2):763–9.

25. Lau YL, Meganathan P, Sonaimuthu P, Thiruvengadam G, Nissapatorn V, Chen Y. Specific, sensitive, and rapid diagnosis of active toxoplasmosis by a loop-mediated isothermal amplification method using blood samples from patients. *J Clin Microbiol.* 2010;48(10):3698–702.
26. Soltani Tehrani B, Mirzajani E, Fallahi S, ManouchehriNaeini K, Mahmoudi MR, Safari Kavishahi M, et al. Challenging TaqMan probe-based real-time PCR and loop-mediated isothermal amplification (LAMP): the two sensitive molecular techniques for the detection of toxoplasmosis, a potentially dangerous opportunistic infection in immunocompromised patients. *Arch Microbiol.* 2020;202(7):1881–8.
27. Han ET. Loop-mediated isothermal amplification test for the molecular diagnosis of malaria. *Expert Rev Mol Diagn.* 2013;13(2):205–18.
28. Lai MY, Sohairy AN, Zen LPY, Abdullah ML, Lau YL. Loop-mediated isothermal amplification for diagnosis of zoonotic Malaria. *Am J Trop Med Hyg.* 2024;111(4):765–9.
29. Lau YL, Lai MY, Fong MY, Jelip J, Mahmud R. Loop-mediated isothermal amplification assay for identification of five human *Plasmodium* species in Malaysia. *Am J Trop Med Hyg.* 2016;94(2):336–9.
30. Samuels AM, Towett O, Seda B, Wiegand RE, Otioko K, Chomba M, et al. Diagnostic performance of loop-mediated isothermal amplification and ultrasensitive rapid diagnostic tests for malaria screening among pregnant women in Kenya. *J Infect Dis.* 2022;226(4):696–707.
31. Xu J, Rong R, Zhang HQ, Shi CJ, Zhu XQ, Xia CM. Sensitive and rapid detection of *Schistosoma japonicum* DNA by loop-mediated isothermal amplification (LAMP). *Int J Parasitol.* 2010;40(3):327–31.
32. Fernandez-Soto P, GandaseguiArahuetes J, Sanchez Hernandez A, Lopez Aban J, Vicente Santiago B, Muro A. A loop-mediated isothermal amplification (LAMP) assay for early detection of *Schistosoma mansoni* in stool samples: a diagnostic approach in a murine model. *PLoS Negl Trop Dis.* 2014;8(9): e3126.
33. Crego-Vicente B, Fernandez-Soto P, Febrer-Sendra B, Garcia-Bernalt Diego J, Boissier J, Angora EK, et al. Application of a genus-specific LAMP assay for schistosome species to detect *Schistosoma haematobium* x *Schistosoma bovis* hybrids. *J Clin Med.* 2021;10:6.
34. Mwangi IN, Agola EL, Mugambi RM, Shiraho EA, Mkoji GM. Development and evaluation of a loop-mediated isothermal amplification assay for diagnosis of *Schistosoma mansoni* infection in faecal samples. *J Parasitol Res.* 2018;2018:1267826.
35. Sorka M, Wasowicz B, Rymaszewska A. Loop-mediated isothermal amplification (LAMP): the better sibling of PCR? *Cells.* 2021;10:8.
36. Avendaño C, Patarroyo MA. Loop-mediated isothermal amplification as point-of-care diagnosis for neglected parasitic infections. *Int J Mol Sci.* 2020;21:21.
37. García-Bernalt Diego J, Fernández-Soto P, Crego-Vicente B, Alonso-Castrillejo S, Febrer-Sendra B, Gómez-Sánchez A, et al. Progress in loop-mediated isothermal amplification assay for detection of *Schistosoma mansoni* DNA: towards a ready-to-use test. *Sci Rep.* 2019;9(1):14744.
38. Song J, Liu C, Bais S, Mauk MG, Bau HH, Greenberg RM. Molecular detection of schistosome infections with a disposable microfluidic cassette. *PLoS Negl Trop Dis.* 2015;9(12): e0004318.
39. Aula OP, McManus DP, Jones MK, You H, Cai P, Gordon CA. Optimisation of the DNA dipstick as a rapid extraction method for *Schistosoma japonicum* in infected mice samples and spiked human clinical samples. *Infect Dis Poverty.* 2023;12(1):71.
40. Gandasegui J, Fernández-Soto P, Carranza-Rodríguez C, Pérez-Arellano JL, Vicente B, López-Abán J, et al. The rapid-heat LAMPellet method: a potential diagnostic method for human urogenital schistosomiasis. *PLoS Negl Trop Dis.* 2015;9(7): e0003963.
41. Song J, Liu C, Mauk MG, Rankin SC, Lok JB, Greenberg RM, et al. Two-stage isothermal enzymatic amplification for concurrent multiplex molecular detection. *Clin Chem.* 2017;63(3):714–22.
42. Li Mengru QZ, Kun Y, Jiarui L, Shuo Y, Bin Z. Establishment and evaluation of a LAMP-CRISPR-based nucleic acid detection method for *Schistosoma japonicum*. *China Trop Med.* 2023;23(07):686–91.
43. WHO. Ending the neglect to attain the Sustainable Development Goals: A road map for neglected tropical diseases 2021–2030. 2021. <https://www.who.int/publications/item/9789240010352>. Accessed 1 Apr 2025.
44. Moher D, Liberati A, Tetzlaff J, Altman DG. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. *PLoS Med.* 2009;6(7): e1000097.
45. Whiting PF, Rutjes AW, Westwood ME, Mallett S, Deeks JJ, Reitsma JB, et al. QUADAS-2: a revised tool for the quality assessment of diagnostic accuracy studies. *Ann Intern Med.* 2011;155(8):529–36.
46. Deeks JJ, Macaskill P, Irwig L. The performance of tests of publication bias and other sample size effects in systematic reviews of diagnostic test accuracy was assessed. *J Clin Epidemiol.* 2005;58(9):882–93.
47. Li HM, Qin ZQ, Bergquist R, Qian MB, Xia S, Lv S, et al. Nucleic acid amplification techniques for the detection of *Schistosoma mansoni* infection in humans and the intermediate snail host: a structured review and meta-analysis of diagnostic accuracy. *Int J Infect Dis.* 2021;112:152–64.
48. Espírito-Santo MC, Alvarado-Mora MV, Dias-Neto E, Botelho-Lima LS, Moreira JP, Amorim M, et al. Evaluation of real-time PCR assay to detect *Schistosoma mansoni* infections in a low endemic setting. *BMC Infect Dis.* 2014;14:558.
49. Miller K, Choudry J, Mahmoud ES, Ladh N. Accurate diagnosis of *Schistosoma mansoni* and *S. haematobium* from filtered urine samples collected in Tanzania Africa. *Pathogens.* 2024;13:1.
50. Ladh N, Naples JM, Bosompem KM, Quartey J, Shiff CJ. Detection of parasite-specific DNA in urine sediment obtained by filtration differentiates between single and mixed infections of *Schistosoma mansoni* and *S. haematobium* from endemic areas in Ghana. *PLoS ONE.* 2014;9(3): e91144.
51. Allam AF, Kamel MA, Farag HF, Raheem HG, Shehab AY, Hagras NA. Performance of loop-mediated isothermal amplification (LAMP) for detection of *Schistosoma mansoni* infection compared with Kato-Katz and real-time PCR. *J Helminthol.* 2022;96: e28.
52. García-Bernalt Diego J, Fernández-Soto P, Febrer-Sendra B, Crego-Vicente B, Muro A. Loop-mediated isothermal amplification in schistosomiasis. *J Clin Med.* 2021;10:3.
53. Francois P, Tangomo M, Hibbs J, Bonetti EJ, Boehme CC, Notomi T, et al. Robustness of a loop-mediated isothermal amplification reaction for diagnostic applications. *FEMS Immunol Med Microbiol.* 2011;62(1):41–8.
54. Price M, Cyrs A, Sikasunge CS, Mwansa J, Ladh N. Testing the Infection Prevalence of *Schistosoma mansoni* after mass drug administration by comparing sensitivity and specificity of species-specific repeat fragment amplification by PCR and loop-mediated isothermal amplification. *Am J Trop Med Hyg.* 2019;101(1):78–83.
55. Ladh N, Mikita K, Bosompem KM, Anyan WK, Quartey JK, Otchere J, et al. Point of care diagnosis of multiple schistosome parasites: Species-specific DNA detection in urine by loop-mediated isothermal amplification (LAMP). *Acta Trop.* 2017;173:125–9.
56. Keddie SH, Baerenbold O, Keogh RH, Bradley J. Estimating sensitivity and specificity of diagnostic tests using latent class models that account for conditional dependence between tests: a simulation study. *BMC Med Res Methodol.* 2023;23(1):58.
57. Yu C. Establishment of loop mediated isothermal DNA amplification for identifying *Oncomelania* snails infected with *Schistosoma japonicum*. *J Pathogen Biol.* 2008;09:661–4.
58. Xu J, Guan ZX, Zhao B, Wang YY, Cao Y, Zhang HQ, et al. DNA detection of *Schistosoma japonicum*: diagnostic validity of a LAMP assay for low-intensity infection and effects of chemotherapy in humans. *PLoS Negl Trop Dis.* 2015;9(4): e0003668.
59. Gandasegui J, Fernandez-Soto P, Muro A, Simoes Barbosa C, Lopes de Melo F, Loyo R, et al. A field survey using LAMP assay for detection of *Schistosoma mansoni* in a low-transmission area of schistosomiasis in Umbuzeiro, Brazil Assessment in human and snail samples. *PLoS Negl Trop Dis.* 2018;12(3): e0006314.
60. Gomes ECS, Barbosa Júnior WL, Melo FL. Evaluation of SmITS1-LAMP performance to diagnosis schistosomiasis in human stool samples from an endemic area in Brazil. *Exp Parasitol.* 2022;242: 108389.
61. Fernández-Soto P, Gandasegui J, Carranza Rodríguez C, Pérez-Arellano JL, Crego-Vicente B, García-Bernalt Diego J, et al. Detection of *Schistosoma mansoni*-derived DNA in human urine samples by loop-mediated isothermal amplification (LAMP). *PLoS ONE.* 2019;14(3): e0214125.
62. Bayoumi A, Al-Refaif SA, Badr MS, Abd El-Aal AA, El Akkad DMH, Saad N, et al. Loop-mediated isothermal amplification (LAMP): sensitive and

rapid detection of *Schistosoma haematobium* DNA in urine samples of Egyptian suspected cases. *J Egypt Soc Parasitol.* 2016;46(2):299–308.

- 63. Gondasegui J, Fernández-Soto P, Dacal E, Rodríguez E, Saugar JM, Yépes E, et al. Field and laboratory comparative evaluation of a LAMP assay for the diagnosis of urogenital schistosomiasis in Cubal, Central Angola. *Trop Med Int Health: TM & IH.* 2018;23(9):992–1001.
- 64. Salas-Coronas J, Luzón-García MP, Crego-Vicente B, Soriano-Pérez MJ, Febrer-Sendra B, Vázquez-Villegas J, et al. Evaluation of loop-mediated isothermal amplification (lamp) in urine samples for the diagnosis of imported schistosomiasis. *Trop Med Infect Dis.* 2023;8(12):518.