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Abstract

The transmission of infectious diseases is a dynamic process determined by multiple factors originating from
disease pathogens and/or parasites, vector species, and human populations. These factors interact with each other
and demonstrate the intrinsic mechanisms of the disease transmission temporally, spatially, and socially. In this
article, we provide a comprehensive perspective, named as systems thinking, for investigating disease dynamics
and associated impact factors, by means of emphasizing the entirety of a system’s components and the complexity
of their interrelated behaviors. We further develop the general steps for performing systems approach to tackling
infectious diseases in the real-world settings, so as to expand our abilities to understand, predict, and mitigate
infectious diseases.
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Background
According to A Dictionary of Epidemiology, epidemiology
in general deals with “the study of the occurrence and dis-
tribution of health-related states or events in specified
populations, including the study of the determinants influ-
encing such states, and the application of this knowledge
to control the health problems” [1]. In this regard, epi-
demiological studies in combating infectious diseases
mainly focus on addressing the challenges from the
following three aspects: (1) investigating tempo-spatial
patterns of disease occurrence; (2) identifying and evaluat-
ing associated impact factors; (3) exploring and conduct-
ing effective intervention measures. In doing so,
epidemiologists will make use different methods in data
collection and analysis [2, 3]. On one hand, empirical
methods are often used in the phase of disease surveil-
lance, which is to collect and analyze observational data
about disease occurrences descriptively (e.g., when, where,
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and who). The results of this phase will help identify the
tempo-spatial patterns of disease occurrences in humans
as well as discover the variations with reference to their
social and demographical characteristics (i.e., age, gender,
and ethnicity) [4]. Experimental methods are needed in
field investigation so as to test epidemiological hypotheses
that are relating the proposed causes to the observed ef-
fects, the findings of which may serve as the foundation
for developing and conducting intervention measures [5].
On the other hand, theoretical methods are essential for
the purpose of formally understanding and characterizing
the causality of disease transmission as well as evaluating
the effectiveness of interventions by means of establishing
associative or causal relationships between impact factors
and disease occurrences [6]. Mathematical and computa-
tional models (e.g., compartmental Susceptible-Infectious-
Recovered (SIR) modeling and multi-agent modeling) to-
gether with scenario-based simulations are developed as
predictive tools for characterizing the dynamics of disease
transmission and evaluating interrelationships with vari-
ous impact factors [7, 8].
The existing methods have thrived for several decades and

made great contributions in understanding and combating
infectious diseases. However, there remain a number of
challenges [9–11]. As schematically shown in Fig. 1, these
challenges come from emerging and re-emerging infectious
diseases, which are significantly correlated with the multiple
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Fig. 1 The basic interacting components (i.e., three circles) and multiple factors (i.e., shaded factors surrounding the components) affecting the
transmission of infectious diseases
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impact factors and their interacting effects, including disease
pathogen/parasite microbial genetic mutation, human socio-
economic and behavioral changes, as well as environmental
and ecological conditions. These interacting and coupling
relationships among multiple impact factors have demon-
strated the intrinsic mechanisms of the disease transmis-
sion temporally, spatially, and socially, while exhibiting
systems characteristics of feedback, saturation, bifurcation,
and chaos, etc., which make it hardly possible to utilize the
conventional methods for comprehensive epidemiological
investigations [12]. At the same time, the effective interven-
tion measures rely on biomedical understandings of disease
pathogens/parasites, descriptive studies on tempo-spatial
patterns of disease occurrences, and casual analysis of im-
pact factors. Besides, predictive explorations on the trends
of disease transmission by exploring the mechanism-based
interactions among the constituting components of disease
transmission also play an important role in understanding
and combating infectious diseases. For example, the early
warning system for a newly emerging infectious disease, like
H1N1 influenza, requires the knowledge about the possible
geographical routes of disease transmission, such as human
air-travel networks [13, 14]. The prevention of zoonotic
and vector-borne diseases, like malaria, needs to address
both environmental and ecological changes for vector
species [15, 16] and human behaviors [17, 18], such as the
migrant and mobile populations [19]. And furthermore, the
effectiveness of conducted disease interventions depends
on the efficacy of resource allocation, compliance of
targeted host populations, and responsive feedback of
environmental modifications.
In addition to the above-mentioned challenges, epidemio-
logical studies also face with new opportunities in the pres-
ence of data-centric era, which is being enabled by the
confluence of data from various sources and the develop-
ment of modeling and analytical tools in data science. For
example, WHO’s global disease surveillance system
connects the health agencies of its member countries and
partners at different scales, including local, regional, na-
tional, and international organizations. Such a surveillance
system can be used for managing and sharing both histor-
ical records and reports on when and where some people
have been infected by certain kinds of disease. In addition
to those for disease surveillance and monitoring, other data
sources are also helpful for analyzing and modeling poten-
tial disease transmission risks. For example, remote sensing
data from satellites can readily be utilized in mapping the
meteorological and ecological conditions of local or global
environments, especially those remote and harsh regions,
where field studies are either impossible or too costly to
conduct due to their physical and political constraints
[20, 21]. Another important source of data is from
Internet-based media, which can serve as an informative
channel for revealing individuals’ health related behaviors
and opinions [22]. For example, Google flu trends was
earlier used to assess the transmission of influenza virus
[23, 24], and the use of Internet search data was demon-
strated to be effective in predicting dengue [25].
In view of these challenges and opportunities, it would

be imperative to develop new methods and paradigms that
can offer a novel comprehensive perspective for investigat-
ing disease dynamics and associated impact factors, so as
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to expand our abilities to understand, predict, and miti-
gate infectious diseases.

Discussion
Systems thinking in combating infectious diseases
Systems thinking is a philosophical as well as methodo-
logical perspective that draws on the fundamental notions
of systems theory that views a system as an integration of
components together with the interacting relationships
among them and with their residing environments [26–
28]. Systems thinking emphasizes two fundamental con-
cepts, i.e., complexity and entirety. Systems complexity is
generated from the structure of integrated components,
which is how the constituting components are organized
and interact with each other and with the environments.
Systems entirety is derived from the dynamic behaviors of
a system as a whole, which is to say how a complex system
of interacting components behaves and exhibits the emer-
gent properties at the system level rather than a simple be-
havioral aggregation of its basic components.
Systems thinking offers a novel comprehensive perspective

that examines the process of infectious disease transmission
as a system with its structural complexity and behavioral en-
tirety. In such a system, the components include disease
pathogens/parasites, vector species, human populations, and
their natural, social, and behavioral environments. The inter-
actions among components are present, such as disease
pathogen/parasite can infect and be transmitted between
and/or within vector species and human populations. The
interacting relationships of components with their relying
environments can be described as components’ responses to
the potential environmental changes, for example, biomed-
ical genetic mutations of pathogens or parasites as a result
of drug resistance selection, vector population fluctuations
due to climate changes, and human exposure behavioral
changes due to their socio-economic conditions. The emer-
gent behaviors of such a system, i.e., the emerging and re-
emerging infectious diseases, depend on the integrated
effects of all the constituting components, including micro-
bial evolutionary pathogens, zoonotic vector exposures, en-
vironmental changes, and human behavioral modifications.
Based on the above mentioned perspective of systems

thinking, the studies of infectious diseases will go beyond
the conventional methods that are usually confined by their
disciplinary boundaries, such as the statistical analysis of
disease occurrences or laboratory research on disease path-
ogens. The intervention measures in combating infectious
diseases will be designed to modify the emergent behaviors
at the system level, by exploring the interdisciplinary
methods that aim to address systems complexity. Towards
this end, we need a set of novel modeling and analyzing
tools drawing on the concepts of systems thinking. This will
enable the epidemiologists to develop and deploy more ef-
fective intervention measures.
Complex systems approach in principle
The complex systems approach is a holistic approach that
is intended to model, characterize, explain, and predict the
emergent behaviors of a system with reference to its consti-
tuting complexity, which is hard to derive or compute by
using conventional top-down reductionist approaches [29–
31]. Such an approach pays a special attention to achieving
the following three objectives [32, 33]:

(1)Systems modeling

The step of systems modeling provides a blueprint/
framework that is abstracted and replicated from the
real-world observations in the languages of mathemat-
ical/computational characterizations [7, 8, 34, 35].
Employing such a modeling analogy, therefore,
requires identification, abstraction, and/or
reproduction of certain observations, which is the
starting point for the following steps of systems
exploration and problem solving. For example, the
compartmental models (e.g., the SIR model) for
studying the influenza-like diseases use several
compartments (i.e., susceptible, infectious, and
recovered) to represent the different states of human
infections (i.e., Susceptible-Infected-Recovered) [36].
In systems modeling, the basic components of a
model also known as entities are the basic constitu-
ents of a complex system, which directly or indirectly
interact among themselves as well as with their
environments based on certain predefined or known
mechanisms or principles. For example, in a network-
based disease model, nodes represent human
individuals whereas links represent the routes of
disease transmission. Disease can be transmitted from
one node to another due to the predefined contact
interactions [37]. Interrelationships exist among
entities and their local and global environments,
through which the complex system as a whole
exhibits its structural and behavioral complexity at
and across various scales. Emergence, which is the
dynamic transmission of infectious diseases, is defined
in terms of the system-level patterns and regularities
arising from the dynamics of a group of interacting
entities, as generated from the reciprocally coupled
and dynamically changed interrelations of the entities
at multiple scales.

(2)Systems exploration
Systems exploration presents a set of analytical tools
that are devoted to understanding the operating
mechanisms underlying a complex system and,
furthermore, finding explanations and making
predictions about some observed systems’ dynamics.
In order to uncover the operating mechanisms
behind the observations, systems modeling will be
performed to characterize or simulate the real
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system. For example, we can use the SIR model to
characterize the dynamics of disease transmission in a
human population. Then, by comparing the difference
between the real-world observation and the synthetic
simulation, the models and/or interaction
mechanisms of the system will be fine-tuned, which
may be reflected in the adjustments of the related
model parameters, and the structure and behavior of
the interacting entities. For example, when the
incubation period is taken into consideration, the SIR
model can be modified as the SEIR model with an
additional latency compartment of “E” [8, 38].

(3)Problem solving
Problem solving emphasizes the ability of the
complex systems approach to find its own way to
achieve adaptive solutions that are well suited to the
problem settings at hand. The ultimate goal is to
develop a set of analytical algorithms that can adjust
its own parameters for different application domains.
For example, adaptive evolutionary algorithms can
be used to automatically tune some of the
parameters as related to the developed systems
modeling or the proposed operating mechanisms.
Constrained optimization algorithms are dedicated
to finding the optimal solutions in resource
allocation.

The complex systems approach can be used not only to
build a modeling framework for mapping real-world observa-
tions/phenomena in analytical languages (i.e., mathematical
and computational models), but also to reveal the operating
mechanisms behind a complex system. Problem solving is
Fig. 2 The four essential steps (in ovals) for performing the complex system
show their functional interrelationships
the application of systems modeling and exploration with re-
spect to the specific domain problem set in advance.

Complex systems approach in practice
Generally speaking, in combating infectious diseases, the
complex systems approach can help us understand how
the systems of infectious diseases are organized in terms
of the causal relationships and the impact factors on dis-
ease prevalence, how such systems behave over time and
space by revealing the tempo-spatial distributions of dis-
ease occurrences, and how the diseases can be better
mitigated and eradicated by developing more effective
solutions for infectious disease control.
Specifically, Fig. 2 provides a schematic framework

outlining the four essential steps for performing the
complex systems approach to the epidemiological
studies of infectious diseases.

� Problem-driven conceptual modeling first
translates the real-world problems in an epidemio-
logical domain into conceptual models in a theoretical
or computational domain, which are aimed to describe
the systems components in infectious disease transmis-
sion, their impact factors, and interaction relationships.

� Data-oriented real-world grounding then
concentrates on discovering ways of embodiment of
conceptual models, through the model
parameterization, by means of obtaining and
utilizing real-world data and/or statistic analysis of
the real-world observations.

� Goal-directed analytical inference is devoted to
further developing analytical methods and solutions
s approach in combating infectious diseases. The directional arrows



Xia et al. Infectious Diseases of Poverty  (2017) 6:144 Page 5 of 7
in addressing specific real-world problems of disease
surveillance and control, that is, to find right analyt-
ical methods and solutions to meet the specific
goals.

� Evidence-based practice proceeds to the
implementation, validation, and improvement of the
developed analytical solutions, aiming to bridge the
theoretical and/or computational analysis with the
real world.

Specifically, in the step of conceptual modeling, the goal
is to build theoretical or computational prototypes of in-
fectious disease systems, which can be used to represent
the real-world problems. Based on the existing under-
standing/theoretical/empirical knowledge about infectious
diseases and the related impact factors, mathematical and
computational models can be used as a conceptual frame-
work to reproduce the dynamics of infectious diseases.
For example, in the case of influenza, the demographical
profiles and contact structure of a human host population
can be used to model disease transmission among differ-
ent human groups. In the case of malaria, environmental
factors, such as rainfall and temperature, can be identified
from various sources, which provide us a causality analyt-
ical model for examining the population development of
disease vectors. In order to achieve the above, we need to
perform model selection with reference to the specific
characteristics of the epidemiological problems at hand.
For example, the compartmental models are well suited to
characterizing disease dynamics in several host popula-
tions, such as in the case of influenza. On the other hand,
the network models or agent-based models are more suit-
able for representing disease diffusion due to human
movement behaviors, such as the imported malaria cases
in the remote or cross-border areas [19]. As can be noted,
conceptual modeling depends on simplifications and ab-
stractions about the operating mechanisms of infectious
diseases, which also set up hypotheses for the data collec-
tion in the step of real-world grounding (i.e., function c),
such as the studies of influenza require the human social-
economic data and human behavioral data, e.g., human
air-traveling, and the studies of malaria require to collect
the environmental data, such as rainfall and temperature.
This step also provides a theoretical or computational
qualitative framework for performing analytical inference
methods (i.e., function b).
The goal of real-world grounding is to collect data from

multiple sources and analyze such available data from
different disciplines, aiming at a more comprehensive
understanding about the structural interrelationships and be-
havioral mechanisms of real-world infectious disease sys-
tems. For example, the international airlines provide indirect
networks for the transmission of H1N1 influenza worldwide
[23]. The step of real-world grounding performs multi-
disciplinary data fusion and knowledge discovery from
massively accumulated data. The products of the data-
oriented real-world grounding can in turn be used to provide
empirical intuitions for conceptual modeling (i.e., function
d), generate certain experience-based rules or principals to
guide the practical implementation of infectious disease
control measures (i.e., function f), and parameterize variables
in performing inference algorithms (i.e., function i).
Based on the developed models and collected data, the

step of analytical inference is to provide a series of specific
problem-solving methods and solutions, which can be used
as analytical tools for addressing the real-world problems
that are taken into account in the step of conceptual mod-
eling. For example, based on a network model, inference
methods can be used to reveal the hidden pathways of mal-
aria transmission in the remote or cross-border areas [39].
The gaps between the desired situations (goals) and the
current situations (status quo) in disease surveillance and
control will lead to the inference methods that lead to an
improved solution. Performing analytical inferences will
provide a set of quantitative representations for conceptual
modeling (function a). For example, the inferred weights of
network links denote the possibilities of malaria transmis-
sion among villages. Furthermore, the end products of this
step can also develop solutions for the practical realization
of infectious disease control (function g) and guide the data
collection in the step of real-world grounding (function j).
For example, ranking algorithms can help identify the
relative risks of malaria for various villages in the remote or
cross-border areas. At the same time, as more data are
accumulated, the results of risk ranking will become more
precise and reliable.
The fourth step of evidence-based practice concerns the

application and validation of the developed solutions in
the real-world practice of infectious disease surveillance
and control. The goal of this step is twofold: (1) guiding
the practice of disease control and prevention (function
e); (2) validating and improving the applied analytical
methods (function h). For example, active surveillance
planning methods can help public health authorities de-
cide how to distribute their very sparse resources to high-
priority regions, so as to maximize the outcomes of dis-
ease intervention. The feedback from the field practice
will help validate the analytical results and determine if
the selected models and adopted inference methods can
represent the real-world scenario and thus address the
real-world problems. In other words, theoretical analysis
and results will be used to guide the practice of infectious
disease control, which will in turn validate or improve the
developed models and inference methods.

Conclusions
Systems thinking aims to better understand and
characterize the complexity involved in the process of
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disease transmission and the implementation of interven-
tion measures. A complex systems approach emphasizes
the importance of the “holistic” context. The application
of the complex systems approach in the specific context
of epidemiology provides us a set of analytical tools to
characterize the structure and impact factors of systems
components, to capture the dynamics of how they interact
with each other, and to evaluate and further improve the
disease intervention measures. Systems thinking together
with the complex systems approach represents a new era
in epidemiological studies, which offers a comprehensive
perspective for epidemiology (conceptual modeling, data
grounding, analytical inference, and intervention practice),
while integrating data from a wide range of sources and
utilizing methods from diverse disciplines.
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