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Abstract

Background: The China-Myanmar border region presents a great challenge in malaria elimination in China, and it
is essential to understand the relationship between malaria vulnerability and population mobility in this region.

Methods: A community-based, cross-sectional survey was performed in five villages of Yingjiang county during
September 2016. Finger-prick blood samples were obtained to identify asymptomatic infections, and imported
cases were identified in each village (between January 2013 and September 2016). A stochastic simulation model
(SSM) was used to test the relationship between population mobility and malaria vulnerability, according to the
mechanisms of malaria importation.

Results: Thirty-two imported cases were identified in the five villages, with a 4-year average of 1 case/year (range:
0–5 cases/year). No parasites were detected in the 353 blood samples from 2016. The median density of malaria
vulnerability was 0.012 (range: 0.000–0.033). The average proportion of mobile members of the study population
was 32.56% (range: 28.38–71.95%). Most mobile individuals lived indoors at night with mosquito protection. The
SSM model fit the investigated data (χ2 = 0.487, P = 0.485). The average probability of infection in the members of
the population that moved to Myanmar was 0.011 (range: 0.0048–0.1585). The values for simulated vulnerability
increased with greater population mobility in each village.

Conclusions: A high proportion of population mobility was associated with greater malaria vulnerability in the
China-Myanmar border region. Mobile population-specific measures should be used to decrease the risk of malaria
re-establishment in China.
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Background
Globalization and international population migration have
caused imported malaria cases to become the predominant
threat to the Chinese malaria elimination program [1, 2].
One major challenge is cross-border malaria transmission,
which is a particular concern in the China-Myanmar

border region [3–5]. Yingjiang is a county in the Yunnan
Province, located at the China-Myanmar border; this re-
gion had the majority of national indigenous malaria cases
reported in previous years. Therefore, this is a critical re-
gion to assess the risk of malaria re-establishment.
In addition to receptivity, malaria vulnerability is consid-

ered a major characteristic for risk assessment of malaria
re-establishment [6–8]. According to the World Health
Organization (WHO) framework for malaria elimination,
malaria vulnerability is defined as either the probability of
malaria parasite importation into a country or area, or the
frequency of the influx of infected individuals, groups,
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and/or infective anopheline mosquitoes. However, since it
is difficult to quantify the importation of infective mosqui-
toes, imported cases or asymptomatic infections are gen-
erally used to quantify vulnerability [6, 7, 9, 10].
Many researchers have found that vulnerability is re-

lated to population mobility [2, 3], and preventing the
infection of a mobile population in a malaria-endemic
area can effectively reduce the importation rate. Thus, it
is important to understand the relationship between
malaria vulnerability and characteristics of mobile popu-
lations. These characteristics include the proportion of
mobile individuals in a population of a given area, ex-
posure risk, and the frequency and duration of popula-
tion movement. Mathematical models are frequently
used to quantify a study population’s characteristics, but
these models may not always be based on traditional
epidemiological methods. The stochastic individual-
based model (IBM) and an ordinary differential equation
model are commonly used in the quantification process
[11–19]. The IBM is also used to assess the risk of mal-
aria establishment [20, 21], although no studies have
used these models to examine population mobility and
malaria in the China-Myanmar border region. Therefore,
by adapting some key components from the IBM model
(i.e., simulation based on individuals using a random
function), we developed a stochastic simulation model
(SSM) using community-based, cross-sectional data to
evaluate population mobility and its effect on malaria
vulnerability in Yingjiang county.

Methods
Study setting
A community-based, cross-sectional survey was used to
obtain data from five villages (Jing Po Zhai, Ka Ya He,
Xin Cun, Zhuan Po Zhai, and Hu Que. Ba) in Yingjiang
county of China (western Yunnan Province) (Fig. 1),
which is 1 of 18 counties located at the China-Myanmar
border. This county shares a 214.6 km border with the
Myanmar state of Kachin. The population of Yingjiang
county is 307 960 individuals, with cross-border trade,
logging, mining, and plantation activities being common.
The basic characteristics of the five selected villages are
shown in Table 1.

Data collection
The epidemiological survey was performed during
September 2016, which is the peak month for local mal-
aria transmission. Before the survey, a pre-survey of four
households was conducted in Hu Que. Ba to adjust the
previously developed questionnaire and to improve the
planning of the survey. There are 170 households located
in the five villages, and an area sampling method that in-
cluded all households was adopted to collect the basic in-
formation for each village and its residents. The basic

information for each village was collected by interviewing
the primary public health provider, and included the vil-
lage name, terrain, average temperature, rainfall, main
crops, number of households, and number of permanent
residents (Additional file 1). The information for each in-
dividual was collected by interviewing people in each
household, and one adult who could provide complete re-
sponses for all household members or visitors was inter-
viewed to complete the standardized questionnaire
(Additional file 2). Before the survey, the primary public
health providers were asked to give the local residents a
notice that included the interview date and survey object-
ive, in order to ensure that one adult was at home during
the survey. The questionnaire included all family members’
demographic information (age, sex, occupation, education),
temporary emigrant information (country, frequency of
movement, duration of stay), temporary immigrant infor-
mation (country, frequency of movement, duration of stay),
and categorical exposure risk level (living indoors at night
with protection, living indoors at night without protection,
living outdoors at night with protection, and living out-
doors at night without protection). Protection was defined
as the use of a screen door or window, repellent, and/or
bed nets, including normal bed nets, long-lasting insecti-
cidal nets, or insecticide-treated nets.
An emigrant was defined as someone who had moved

away from the selected village during the previous year.
An immigrant was defined as someone who had moved
from another place (e.g., Myanmar) into the selected vil-
lage during the previous year. The mobile population
was defined as individuals who had resided in at-risk
areas for > 1 night during the previous year, based on
the malaria transmission route, although individuals
were excluded from the mobile portion of the study
population if they performed many daytime border
crossings. The proportion of the mobile population was
defined as the mobile population divided by the number
of permanent residents.
All individuals, including mobile individuals who were

residing in the village during the survey, were selected for
a serosurvey. Finger-prick blood samples were obtained
after each individual provided written informed consent.
An 18S rRNA nested polymerase chain reaction (PCR)
test and real-time PCR were used to detect Plasmodium
spp. using the finger-prick blood samples [22, 23].

Case definition and classification
Data from malaria cases in the studied villages were re-
ported to the web-based National Notifiable Infectious Dis-
ease Reporting Information System, with cases between
2013 and 2016 used in the analysis. Data included sex, age,
date of illness onset, Plasmodium spp., and imported or in-
digenous case status. Malaria cases were classified as clinic-
ally diagnosed or laboratory-confirmed cases, which were
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both considered eligible for this study. Clinically diagnosed
cases were defined as patients with malaria-like symptoms
who had lived in or recently travelled to areas with known
malaria transmission. Laboratory-confirmed cases were de-
fined as clinically diagnosed cases with positive results from
microscopy evaluation for malaria parasites, rapid diagnos-
tic tests, and/or PCR tests [24].

For case classification especially the identification of
indigenous or imported cases, there was a step-by-step
protocol utilized that was based on dominated specific
species, clear seasonality in China, and history of travel.
If the case was confirmed as non P. vivax in the refer-
ence laboratory system, it would be classified as an
imported case since only P. vivax transmission occurs in

Fig. 1 Location of Yingjiang County as well as the five selected villages
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China, except around the Yunnan border region. How-
ever, classification would be more complicated if the
case was diagnosed as a P. vivax: based on the individual
case investigation, if the onset occurred in the non-
transmission season, it would be mostly classified as an
imported case without the history of infection or an old
infection with the history of infection, while if the onset
occurred in the transmission season, it would be care-
fully classified as an imported case if an individual had a
history of travel to malaria-endemic areas within 1 month
after returning to China, which would otherwise be

classified as an indigenous case. For some special cases,
such as cases reported from the Yunnan border region
and cases without clear evidence to be identified as old
or new infections, they will be discussed and classified
by an expert group which was established by the National
Health and Family Planning Commission (NHFPC) of the
People’s Republic of China. Sometimes we also employed
genotyping for case classification in the reference labora-
tory system, especially for the identification of non-vector-
borne transmissions, such as infection by blood
transfusion.

Table 1 Epidemiological features of the mobile population and basic information regarding the five selected villages at the China-
Myanmar border

Jing Po Zhai Ka Ya He Xin Cun Zhuan Po Zhai Hu Que Ba

Terrain Hilly areas River valley Hilly areas Mountain Plain

Average temperature (°C) 22 22 16 14 18

Rainfall (mm) 2500 2550 2300 2600 2200

Main crops Banana Banana Rice Rice Rice

Number of households 39 22 24 53 32

Number of permanent residents 146 86 82 107 74

Number of mobile population 46 28 59 36 21

Gender (Male/Female) 22/24 13/15 28/31 16/20 9/12

Age (Years)

0–10 5 3 4 3 2

11–20 5 1 6 3 2

21–30 20 8 14 6 7

31–40 7 7 17 6 4

41–50 2 2 7 8 4

51–60 4 3 10 6 1

> 60 3 4 1 4 1

Immigrant 4 2 0 6 3

Area 1 4 0 0 0 0

Myanmar 4 0 0 0 0

Area 2 0 0 0 0 0

Area 3 0 2 0 6 2

China-Myanmar border areas in China 0 2 0 6 2

Area 4 0 0 0 0 1

Transmission interruption areas in China 0 0 0 0 1

Emigrant 42 26 59 30 18

Area 1 23 8 46 3 8

Myanmar 23 8 46 3 7

The Myanmar-Thailand border region 0 0 0 0 1

Area 2 0 0 0 0 0

Area 3 12 6 6 17 1

China-Myanmar border areas in China 12 6 6 17 1

Area 4 7 12 7 10 9

Transmission interruption areas in China 7 12 7 10 9
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Calculation of vulnerability
Vulnerability is calculated using the following equations:

V ¼ na þ nI ð1Þ

DV ¼ V
N

ð2Þ

In these equations, V refers to vulnerability, na refers
to the number of asymptomatic infections, nI refers to
reported imported cases, DV refers to the density of vul-
nerability, and N refers to the number of inhabitants. In
this study, na was estimated using the finger-prick blood
samples that were collected during the cross-sectional
survey. To avoid selection bias, nI was estimated using
the 4-year average for all imported cases from each vil-
lage between January 2013 and September 2016.

Model establishment
The stochastic simulation model (SSM) model was de-
veloped to simulate the relationship between population
mobility and malaria vulnerability according the mech-
anism of malaria importation (Fig. 2). In the model, we
assumed that malaria vulnerability could be affected by
the proportion of the population that is mobile, the epi-
demic status of the areas for temporary immigration and
emigration, the risks of exposure to malarial vectors, the
efficacy of any protection measures, the duration of ex-
posure, and the frequency of movement. The model
used the following equations:

D ¼
X

4
j¼1 Mj � T j � E j � pj � q � 1−eð Þ

� �
ð3Þ

M ¼ Mim þMem

N
ð4Þ

T ¼ f � d ð5Þ

In the model, D is the density of imported cases
(imported cases divided by total inhabitants), M is the
mobile population proportion, Mim is the number of
temporary immigrants, Mem is the number of temporary
emigrants, N is the number of inhabitants, T is the total
duration of exposure, f is the frequency of movement, d
is the duration of each movement, E is the exposure risk,
p is the probability of infection, and e is the efficacy of
protection. We assumed that the probability of infection
for mobile individuals who lived indoors at night should
be multiplied by a protection coefficient (q; 0 < q < 1).
The probability of infection (p) depends on the malaria
situation in areas 1–4, which we defined as intense
transmission (j = 1; ≥5 cases/1000 population), pre-
elimination (j = 2; 1–4.9 cases/1000 population), elimin-
ation (j = 3; < 1 case/1000 population), and malaria-free
(j = 4; no cases) based on the WHO World Malaria Re-
port 2015. These areas included counties or global areas.
For example, Myanmar may be included in area 1, and
some villages in China where malaria is locally transmit-
ted may be classified into area 3. To simulate the sto-
chastic process for p, a random function [f(x) = random
(0, 1)] was used with the condition that if f(x) > p × q ×
(1 - e), the individual would be considered infected. All
other individuals were considered uninfected.

Parameter estimation and simulation methods
Among the 9 parameters in the SSM model (Mim, Mem,
N, f, d, E, p, q, and e), data regarding Mim, Mem, N, f, d,
and E were obtained from the epidemiological survey.
Data regarding the other 3 parameters (p, q, and e) were

Fig. 2 The simplified relationship between the mobile population and vulnerability to malaria at the China-Myanmar border
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obtained using a model fitted with the vulnerability data
from the selected villages. In the model fitting, the simu-
lated D values were compared to the malaria vulnerabil-
ity values (density of imported cases and asymptomatic
infections) by calibrating each parameter until the chi-
square test revealed no significant difference (P > 0.05).
To explore the relationship between malaria vulner-

ability and the proportion of the mobile population, the
SSM model was simulated 1000 times using different M
values (10%, 20%, …, 100%). This approach allowed us
to obtain the simulated densities of imported infections
based on different M values for each village.
Microsoft Office Excel 2010 (Microsoft Corp., Red-

mond, WA, USA) was used to run the SSM model. SPSS
13.0 (IBM Corp., Armonk, NY, USA) was used to per-
form the chi-square test and the Fisher’s exact test.

Results
Basic village information and the mobile populations
The five study villages were located in warm and rainy
areas with variable terrain. The main crops produced by
all five villages were banana and rice. The median num-
ber of permanent residents was 86 (range: 72–146), and
92.11% of the mobile population were temporary emi-
grants (Table 1). Among the immigrants, 66.67% moved
from area 3 (the China-Myanmar border region in China),
26.67% moved from area 1 (Myanmar), and 6.67% moved
from area 4 (an area with transmission interruption in
China). In contrast, among the emigrants, 50.29% moved
to area 1 (Myanmar or the Myanmar-Thailand border
region), 25.71% moved to area 4 (an area with trans-
mission interruption in China), and 24.00% moved to
area 3 (the China-Myanmar border region in China).
The differences in the geographical distributions of
temporary emigrants were significant in the five vil-
lages, based on Pearson’s chi-square test (χ2 = 56.667,
P < 0.001). The male mobile population was slightly
larger than the female mobile population, although
this difference was not significant in the five villages
(χ2 = 0.225, P = 0.994). Most mobile individuals were
20–39-years-old, although no significant differences
were observed in the age distributions for the five
villages (Fisher’s exact test, P = 0.312).

Malaria vulnerabilities in the five villages
During 2013–2016, 32 imported cases were reported in
the five villages, with a 4-year average of one imported
case per year (range: 0–5 cases). These cases predomin-
antly involved Plasmodium vivax (93.75%) and generally
involved male individuals (59.38%), although the cases
were generally distributed equally among the seven age
groups. The highest proportion of cases (50.00%) was
detected in 2015. Fisher’s exact test revealed no
significant differences among the five villages in their

distributions of species (P = 1.000), sex (P = 0.651), age
(P = 0.571), or temporal distribution (P = 0.233), which
are all shown in Table 2. There was no significant
difference between the reported cases in 2016 and the
adjusted 4-year average number of cases (χ2 = 3.580,
P = 0.466).
No parasites were detected using PCR in the 353

blood samples from 2016. The median density of malaria
vulnerability was 0.012 (range: 0.000–0.033) (Table 2).

Parameter estimation and model fitting
The epidemiological survey revealed high proportions of re-
ported mobile populations in each village (median: 32.56%,
range: 28.38–71.95%). All reported temporary immigrants
lived indoors at night with protection. Among the reported
temporary emigrants, 78.29% lived indoors at night with
protection, 1.14% lived indoors at night without protection,
and 20.57% lived outdoors at night with protection. Most
villages had similar patterns of exposure, except Xin Cun
Village, where 78.26% of reported temporary emigrants
lived outdoors at night with protection (Additional file 3).
The average reported exposure time for the majority
of the mobile population was < 5 months. The aver-
age reported frequency of movement was < 3 times in
Jing Po Zhai, Ka Ya He, Zhuan Po Zhai, and Hu Que.
Ba. However, relatively high values of both reported
exposure time (11 months) and reported movement
frequency (13 times) were observed in Xin Cun
(Additional file 3).
The results of the model fitting revealed that the SSM

model fit the reported data (χ2 = 0.487, P = 0.485). The
median probabilities of infection were 0.011 in area
1 (range: 0.0048–0.1585) and 0.003 in area 3 (range:
0.0021–0.0038). The efficacy of protection was 20%
and the protection coefficient (p) for living indoors at
night was 0.95 (Additional file 3), which indicated that
only 20% of protection against infection was associated
with using protection measures (e.g., a screen door or
window, repellent, normal bed nets, long-lasting insecti-
cidal nets, or insecticide-treated nets), and that living
indoors only provided 5% of protection against infection
(vs. living outdoors at night).

Simulated malaria vulnerabilities using different mobile
population proportions
Figure 3 shows that although the density of imported
cases increased with the proportion of mobile individ-
uals in a given population, each village had different vul-
nerability values. The highest simulated malaria
vulnerabilities were observed in Jing Po Zhai, which was
followed by Ka Ya He, Xin Cun, Hu Que. Ba, and Zhuan
Po Zhai.
At medium (0.1 <M < 0.3) or high (0.3 ≤M < 0.5) rates

of migration from medium p1 areas (p1 < 0.1; Hu Que Ba
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and Zhuan Po Zhai), we found that malaria vulnerability
increased slowly with the mobile population proportion.
At exceedingly high (M ≥ 0.7) rates of migration from
medium p1 areas (p1 < 0.1; Xin Cun), or high (0.3 ≤M <
0.5) rates of migration from high p1 areas (0.1 ≤ p1 < 0.
15; Ka Ya He), we found that malaria vulnerability in-
creased with the mobile population proportion. At high
(0.3 ≤M < 0.5) rates of migration from exceedingly high
p1 areas (p1 > 0.15; Jing Po Zhai), we found that malaria
vulnerability increased dramatically with the mobile
population proportion (Fig. 3).
Based on an average simulated M value of 10%, the

imported case densities were 2.6/1000 population for
area 1 (95% CI: 0.1–10.4/1000 population), 0.5/1000
population for area 3 (95% CI: 0.1–0.6/1000 population),
and a total density of 3.2/1000 population (95% CI: 0.2–
10.9/1000 population). The imported cases increased
with an increasing proportion of mobile individuals in
the study population (Fig. 4). Based on a simulated M
value of 100%, the imported case densities increased to
30.5/1000 population for area 1 (95% CI: 0.4–103.1/1000

population), 1.9/1000 population for area 3 (95%
CI: 0.7–5.7/1000 population), and a total density of
32.4/1000 population (95% CI: 1.6–107.4/1000 population).

Discussion
Progress towards eliminating malaria in China has re-
cently reduced the malaria transmission rate in Yunnan
Province [25–27]. However, Yingjiang’s location in a
warm and rainy area at the China-Myanmar border is
associated with high malaria receptivity. Thus, malaria
vulnerability has become a key factor for malaria re-
establishment in this region. The present study revealed
a high mobile population proportion in this county, with
most mobile individuals temporarily moving to
Myanmar. Fortunately, most mobile individuals lived in-
doors with protection, which may have reduced their
risk of infection. However, our results indicate that living
indoors only provided 5% of protection against infection
(vs. living outdoors at night). The low efficacy of living
indoors might be related to the several-hours period be-
tween sunset and actually going to sleep, as vectors

Table 2 Data and model for estimating vulnerability to malaria in the five selected villages

Jing Po Zhai Ka Ya He Xin Cun Zhuan Po Zhai Hu Que Ba

Number of reported imported cases (2013–2016) 19 4 8 0 1

Species of malaria

P. vivax 17 4 8 0 1

P. falciparum 2 0 0 0 0

Gender

Male 10 2 6 0 1

Female 9 2 2 0 0

Age

0–10 5 0 0 0 0

11–20 1 0 1 0 0

21–30 5 1 1 0 1

31–40 3 1 1 0 0

41–50 2 0 3 0 0

51–60 2 1 2 0 0

> 60 1 1 0 0 0

Year

2013 0 0 0 0 0

2014 4 0 1 0 1

2015 9 4 3 0 0

2016 6 0 4 0 0

Four-year average reported imported cases (per year) 4.75 1.00 2.00 0.00 0.25

Number of blood samples collected 77 43 50 112 71

Number of tested asymptomatic infections 0 0 0 0 0

Density of vulnerability to malaria 0.03253 0.01163 0.02439 0.00000 0.00338

Simulated vulnerability to malaria 0.03248 0.01162 0.02438 0.00049 0.00338
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Fig. 3 Simulated density of imported cases caused by varying proportions of mobility in five villages of Yingjiang county, China. Panels a-o
represent the simulated density of imported cases in the five villages under the conditions of p1, p3, and the total probability, respectively. p1
indicates the probability of infection because of immigration or emigration from areas with the most intense transmission (≥5 cases per 1000
population). p3 indicates the probability of infection because of immigration or emigration from malaria elimination areas where the incidence is
< 1 case per 1000 population. The total probability of infection is calculated based on immigration or emigration from all areas

Chen et al. Infectious Diseases of Poverty  (2018) 7:36 Page 8 of 11



could enter the house during this period; it is also pos-
sible that unclosed or leaky windows and doors contrib-
uted throughout the entire night. Nevertheless, the
precise mechanism remains unclear, and additional re-
search is needed to better understand why living indoors
is associated with low efficacy. Our results also indicate
that only 20% protection against infection was associated
with using protection measures (e.g., a screen door or
window, repellent, normal bed nets, long-lasting insecti-
cidal nets, or insecticide-treated nets). The low efficacy
of protection measures might be related to inappropriate
use, and the period between sunset and going to sleep
might be a critical time for infection. Countermeasures
may be needed to decrease the infection of mobile
people during this time. Another reason might be that
people tend to over-report their use of bed nets and to
underreport both their migration behaviors and living
outdoors at night. This reporting bias from mobile pop-
ulations might lead to an underestimation of the efficacy
of living indoors and protection measures.
The high proportion of mobile individuals in the study

population was associated with greater malaria vulner-
ability, which might increase the likelihood of malaria
re-establishment in Yingjiang county. In addition, the
model that was used for analysis fit the reported data,
which indicates that the SSM model can be used to
simulate the relationship between mobile population
proportion and malaria vulnerability. Interestingly, we
observed different infection probabilities among the mo-
bile populations of the five villages, with the greatest
probability observed in area 1. These differences might
be related to the heterogeneous distribution of malaria
transmission in Myanmar. Thus, the mobile populations
of Jing Po Zhai, Ka Ya He, and Xin Cun might have
moved to high transmission areas, while the mobile pop-
ulations of Zhuan Po Zhai and Hu Que. Ba might have
moved to low transmission areas in Myanmar.
Most mobile individuals lived indoors at night with

protection, although the efficacy of protection and rate

of sleeping indoors was low during their stays in
Myanmar. Furthermore, we detected high values for the
mobile population proportion and malaria vulnerability
in the China-Myanmar border region. Moreover, the
SSM model predicted a linear relationship between mo-
bile population proportion and malaria vulnerability.
Therefore, to reduce the risk of malaria re-establishment
in the border regions of China, we recommend introdu-
cing mobile population-specific measures, such as health
education to reduce malarial vector exposure and blood
screening with ultrasensitive reverse transcription PCR
to identify asymptomatic infections when mobile people
return to China [28].
The present study is limited in that it only evaluated

PCR-based data regarding asymptomatic infections from a
single community-based, cross-sectional survey in 2016,
and it is probable that asymptomatic infections were not
detected during 2013–2015 when PCR was not used.
Therefore, the regional vulnerability might be underesti-
mated by using the 4-year average for imported cases, al-
though we believe that this would only have a minor
effect on our findings. It is important to match temporal
behaviors with infection data from the same period, and
the present cross-sectional study collected mobile popula-
tion data from the previous year to ensure that it matched
the imported case data from 2016. However, we found
that no imported cases were reported in three villages
(Table 2). Thus, to avoid selection bias by using only a sin-
gle year for analysis, the data were adjusted using the 4-
year average case numbers from each village during 2013–
2016. After the adjustment, we found that SSM model fit
the data and there was no significant difference between
the reported cases in 2016 and the adjusted 4-year average
number of cases, which indicates that the 4-year average
is appropriate for use in the model.
The simulated results of our study are based on the as-

sumptions of the SSM model. In this model, the independ-
ent variables included the proportion of mobile individuals
in the study population, the epidemic status of the regions

Fig. 4 The median and range values for the simulated densities of imported cases caused by varying proportions of mobility. a, p1. b, p3. c, total.
p1 indicates the probability of infection because of immigration or emigration from areas with the most intense transmission (≥5 cases per 1000
population). p3 indicates the probability of infection because of immigration or emigration from malaria elimination areas where the incidence is
< 1 case per 1000 population. The total probability of infection is calculated based on immigration or emigration from all areas
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that have temporary immigration and emigration, the risk
of exposure to malarial vectors, the efficacy of any protec-
tion measures, the duration of exposure, and the frequency
of movement. However, there might be other independent
variables or residual errors that should be considered in the
model, and additional research is needed to more precisely
explain the mechanism of malaria vulnerability.
Another limitation is the possibility of bias in linking

P. vivax to migration patterns. For example, the high fre-
quency of cross-border movement of mobile individuals
and the long latent period of P. vivax infection [29] can
make it difficult to determine when the P. vivax infec-
tion was acquired. Fortunately, China has developed a
step-by-step protocol for case classification and a 5-level
case confirmation network. The foundation of the net-
work is comprised of each hospital and clinic that de-
tects and reports malaria cases. Next, the county’s
Center for Disease Control and Prevention (CDC) im-
plements an epidemiological investigation to categorize
the case as imported or indigenous. The municipal CDC
then checks the information that was reported by the
county CDC, and each case is finally verified by a pro-
vincial reference laboratory after being reported by the
local public health institute. The final confirmation of
each malaria case is approved by the NHFPC expert
group. This process and the step-by-step protocol ensure
that each malaria case is diagnosed and categorized cor-
rectly, and minimizes the likelihood of diagnostic bias in
China.

Conclusions
This community-based, cross-sectional study was per-
formed to develop an SSM model that simulates mobile
population dynamics and malaria vulnerability in the
China-Myanmar border region. High population mobil-
ity was observed with different epidemiological charac-
teristics and exposure patterns, which were associated
with varying levels of vulnerability in the studied villages.
Thus, the SSM model could be used as a tool to quantify
the linear relationship between vulnerability and mobile
populations, and it may be useful for assessing the risk
of malaria re-establishment in China.
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